466
Views
6
CrossRef citations to date
0
Altmetric
Articles

The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range

, , &
Pages 796-802 | Received 08 Dec 2015, Accepted 18 Jan 2016, Published online: 11 Feb 2016

References

  • Siegel PH. Terahertz technology. IEEE Trans Micro Theory Tech. 2002;50:910–928. doi:10.1109/22.989974.
  • Hu BB, Nuss MC. Imaging with terahertz waves. Opt Lett. 1995;20:1716–1718. doi:10.1364/OL.20.001716.
  • Leahy-Hoppa MR, Fitch MJ, Zheng X, et al. Wideband terahertz spectroscopy of explosives. Chem Phys Lett. 2007;434:227–230. doi:10.1016/j.cplett.2006.12.015.
  • Markus W, Fischer BM, Jepsen PU. Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem Phys. 2003;288:261–268. doi:10.1016/S0301-0104(03)00031-4.
  • Kim SM, Hatami F, Harris JS, et al. Biomedical terahertz imaging with a quantum cascade laser. Appl Phys Lett. 2006;88:153903–154100. doi:10.1063/1.2194229.
  • Kawase K, Ogawa Y, Watanabe Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express. 2003;11:2549–2554. doi:10.1364/OE.11.002549.
  • Kyoji S, Masahiko T, Masanori H, et al. Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode. Appl Phys Lett. 2007;90:161127. doi:10.1063/1.2730739.
  • Thomas KO, Nagatsuma T. A review on terahertz communications research. J Infrared Milli Terahz Waves. 2011;32:143–171. doi:10.1007/s10762-010-9758-1.
  • John F, Moeller L. Review of terahertz and subterahertz wireless communications. J Appl Phys. 2010;107:111101. doi:10.1063/1.3386413.
  • Zhang XC, Xu JZ. Introduction to THz wave photonics. New York: Springer; 2010.
  • Zhang H, Guo P, Chen P, et al. Liquid-crystal-filled photonic crystal for terahertz switch and filter. J Opt Soc Am B. 2009;26:101–106. doi:10.1364/JOSAB.26.000101.
  • Chen C-Y, Hsieh C-F, Lin Y-F, et al. Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter. Opt Express. 2004;12:2625–2630. doi:10.1364/OPEX.12.002625.
  • Roman D, Kula P, Herman J. High birefringence liquid crystals. Cryst. 2013;3:443–482. doi:10.3390/cryst3030443.
  • Dąbrowski R, Urban S, Celiński M, et al. Relaxation frequencies for flip-flop rotation of three-and four-ring compounds, and dual frequency addressing mixtures with high birefringence. Liq. Cryst. 2015;42:344–360. doi:10.1080/02678292.2014.988764.
  • Lin X-W, Wu J-B, Hu W, et al. Self-polarizing terahertz liquid crystal phase shifter. AIP Advances. 2011;1:2133. doi:10.1063/1.3626560.
  • Altmann K, Reuter M, Garbat K, et al. Polymer stabilized liquid crystal phase shifter for terahertz waves. Opt Express. 2013;21:12395. doi:10.1364/OE.21.012395.
  • Wu Y, Ruan X, Chen C-H, et al. Graphene/liquid crystal based terahertz phase shifters. Opt Express. 2013;21:21395–21402. doi:10.1364/OE.21.021395.
  • Wu HY, Hsieh CF, Tang TT, et al. Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter. IEEE Photon Technol Lett. 2006;18(14):1488–1490. doi:10.1109/LPT.2006.877579.
  • Wang L, Lin X, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl. 2015;4(2):e253. doi:10.1038/lsa.2015.26.
  • Yang C-S, Tang -T-T, Chen P-H, et al. Voltage-controlled liquid-crystal terahertz phase shifter with indium–tin–oxide nanowhiskers as transparent electrodes. Opt Lett. 2014;39:2511–2513. doi:10.1364/OL.39.002511.
  • Kowerdziej R, Parka J, Nyga P, et al. Simulation of a tunable metamaterial with nematic liquid crystal layers. Liq. Cryst. 2011;38:377–379. doi:10.1080/02678292.2010.549614.
  • Kowerdziej R, Stańczyk T, Parka J. Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal. Liq. Cryst. 2015;42:430–434. doi:10.1080/02678292.2014.1000406.
  • Buchnev O, Podoliak N, Kaczmarek M, et al. Metamaterials: electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv Opt Mater. 2015;3:595–595. doi:10.1002/adom.201570026.
  • Zografopoulos DC, Beccherelli R. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching. Sci Rep. 2015;5:13137. doi:10.1038/srep13137.
  • Isic G, Vasic B, Zografopoulos DC, et al. Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl. 2015;3:064007.
  • Gorkunov MV, Miroshnichenko AE, Kivshar YS. Metamaterials Tunable with Liquid Crystals. In: Shadrivov IV, Lapine M, Kivshar YS, editors. Nonlinear, tunable and active metamaterials. Vol. 200 of the series Springer Series in Materials Science. Berlin: Springer International; 2015. p. 237–253.
  • Kowerdziej R, Jaroszewicz L, Olifierczuk M, et al. Experimental study on terahertz metamaterial embedded in nematic liquid crystal. Appl Phys Lett. 2015;106:092905. doi:10.1063/1.4914032.
  • Turchinovich D, Knobloch P, Luessem G, et al. THz time domain spectroscopy on 4-(trans-4ʹ-pentylcyclohexyl)-benzonitril. Proc SPIE. 2001;4463:65–70.
  • Pan RP, Tsai TR, Chen CY, et al. Optical constants of two typical liquid crystals 5Cb and PCH5 in the THz frequency range. J Biol Phys. 2003;29:335–338. doi:10.1023/A:1024485918938.
  • Pan RP, Tsai TR, Chen CY, et al. The refractive indices of nematic liquid crystal 4ʹ-n-pentyl-4-cyanobiphenyl. Mol Cryst Liq Cryst. 2004;409:137–144.
  • Tsai TR, Chen CY, Pan CL, et al. Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystals 5CB. Appl Opt. 2003;42:2372–2376. doi:10.1364/AO.42.002372.
  • Yang C-S, Lin C-J, Pan R-P, et al. The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range. J Opt Soc Am B. 2010;27:1866–1873. doi:10.1364/JOSAB.27.001866.
  • Reuter M, Vieweg N, Fischer BM, et al. Highly birefringent, low-loss liquid crystals for terahertz applications. Appl Phys Lett Materials. 2013;1:012107.
  • Sun H, Zhou Q, Shi Y, et al. Optical properties study on some nematic liquid crystals in the terahertz range. (SPIE) Conf Ser. 2010;7854:35.
  • Park H, Fan F, Lim M, et al. Terahertz properties of liquid crystals. IEEE Milli. THz Waves. 2011;36:1–3.
  • Chodorow U, Parka J, Garbat K. Spectral and photorefractive properties of nematic liquid crystals from the CHBT family in the terahertz range. Liq. Cryst. 2013;40:1089–1094. doi:10.1080/02678292.2013.796533.
  • Wang L, Lin X-W, Liang X, et al. Large birefringence liquid crystal material in terahertz range. Opt Mater Express. 2012;2:1314–1319. doi:10.1364/OME.2.001314.
  • Chodorow U, Chojnowska O, Parka J. Properties of two-component nematic liquid crystal mixtures in the range of 0.3-3.0 THz. Liq. Cryst. 2015;42:1243–1249. doi:10.1080/02678292.2015.1036816.
  • Vieweg N, Koch M. Terahertz properties of liquid crystals with negative dielectric anisotropy. Appl Opt. 2010;49:5764–5767. doi:10.1364/AO.49.005764.
  • Gauza S, Jiao M, Wu S-T, et al. High birefringence and low viscosity negative dielectric anisotropy liquid crystals. Liq. Cryst. 2008;35:1401–1408. doi:10.1080/02678290802624381.
  • Ku CP, Shih CC, Lin CJ, et al. THz optical constants of the liquid crystal MDA-00-3461. Mol Cryst Liq Cryst. 2011;541:65–303. doi:10.1080/15421406.2011.570149.
  • Chodorow U, Parka J, Garbat K, et al. Spectral properties of nematic liquid crystal mixtures composed with long and short molecules in THz frequency range. Mol Cryst Liq Cryst. 2012;561:74–81. doi:10.1080/15421406.2012.686714.
  • Vieweg N, Shakfa MK, Koch M. BL037: a nematic mixture with high terahertz birefringence. Opt Commun. 2011;284:1887–1889. doi:10.1016/j.optcom.2010.12.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.