707
Views
20
CrossRef citations to date
0
Altmetric
Articles

Photo-responsive liquid crystalline elastomer with reduced chemically modified graphene oxide

, , &
Pages 1009-1016 | Received 21 Jan 2016, Accepted 14 Feb 2016, Published online: 02 Mar 2016

References

  • Warner MT, Terentjev EM. Liquid crystal elastomers. Oxford: Oxford University Press; 2003.
  • Li MH, Keller P. Artificial muscles based on liquid crystal elastomers. Phil Trans R Soc A. 2006;364:2763–2777. doi:10.1098/rsta.2006.1853.
  • Yang H, Buguin A, Taulemesse J-M, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J Am Chem Soc. 2009;131:15000–15004. doi:10.1021/ja905363f.
  • Ohm C, Serra C, Zentel R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater. 2009;21:4859–4862. doi:10.1002/adma.200901522.
  • Wei RB, He YN, Wang XG, et al. Nematic liquid crystalline elastomer grating and microwire fabricated by micro-molding in capillaries. Macromol Rapid Commun. 2013;34:330–334. doi:10.1002/marc.v34.4.
  • Ikeda T, Nakano M, Yu YL, et al. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater. 2003;15:201–205. doi:10.1002/adma.200390045.
  • Yu YL, Nakano M, Ikeda T. Directed bending of a polymer film by light – miniaturizing a simple photomechanical system could expand its range of application. Nature. 2003;425:145–145. doi:10.1038/425145a.
  • Li MH, Keller P, Li B, et al. Light-driven side-on nematic elastomer actuators. Adv Mater. 2003;15:569–572. doi:10.1002/adma.200304552.
  • Urayama K, Kondo H, Arai YO, et al. Electrically driven deformations of nematic gels. Phys Rev E. 2005;71:051713. doi:10.1103/PhysRevE.71.051713.
  • Riou O, Lonetti B, Tan RP, et al. Room-temperature, strain-tunable orientation of magnetization in a hybrid ferromagnetic Co nanorod-liquid crystalline elastomer nanocomposite. Angew Chem Int Ed. 2015;127:10961–10965. doi:10.1002/ange.201504320.
  • Wei RB, He YN, Wang XG, et al. Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function. Macromol Rapid Commun. 2014;35:1571–1577. doi:10.1002/marc.v35.18.
  • Wei RB, Zhang HX, He YN, et al. Photoluminescent nematic liquid crystalline elastomer actuators. Liq Cryst. 2014;41:1821–1830. doi:10.1080/02678292.2014.951006.
  • Finkelmann H, Kim ST, Munoz A, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13:1069–1072. doi:10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6.
  • Yamada M, Kondo M, Mamiya JI, et al. Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed. 2008;47:4986–4988. doi:10.1002/anie.200800760.
  • Wu W, Yao L, Yang T, et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J Am Chem Soc. 2011;133:15810–15813. doi:10.1021/ja2043276.
  • Shenoy DK, Thomsen DL, Srinivasan A, et al. Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors Actuat A-Phys. 2002;96:184–188. doi:10.1016/S0924-4247(01)00793-2.
  • Yang LQ, Setyowati K, Li A, et al. Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv Mater. 2008;20:2271–2275. doi:10.1002/adma.v20:12.
  • Sun X, Wang W, Qiu L, et al. Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew Chem Int Ed. 2012;51:8520–8524. doi:10.1002/anie.201201975.
  • Camargo CJ, Campanella H, Marshall JE, et al. Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers. Macromol Rapid Commun. 2011;32:1953–1959. doi:10.1002/marc.201100578.
  • Li C, Liu Y, Huang X, et al. Light actuation of graphene-oxide incorporated liquid crystalline elastomer nanocomposites. Mol Cryst Liq Cryst. 2015;616:83–92. doi:10.1080/15421406.2014.990256.
  • Yaoran S, Evans JS, Taewoo L, et al. Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Appl Phys Lett. 2012;100:241901. doi:10.1063/1.4729143.
  • Wang ZC, Wei RB, Liu XB. Facile fabrication of multilayer films of graphene oxide/copper phthalocyanine with high dielectric properties. RSC Adv. 2015;5:88306–88310. doi:10.1039/C5RA20022A.
  • Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347:1246501. doi:10.1126/science.1246501.
  • Ferrari AC, Bonaccorso F, Fal’Ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–4810. doi:10.1039/C4NR01600A.
  • Liu X, Zhang K, Yang B, et al. Three-dimensional graphene skeletons supported nickel molybdate nanowire composite as novel ultralight electrode for supercapacitors. Mater Lett. 2016;164:401–404. doi:10.1016/j.matlet.2015.11.051.
  • Yang Y, Zhan W, Peng R, et al. Graphene‐enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv Mater. 2015;27:6376–6381. doi:10.1002/adma.201503680.
  • Rodaite-Riseviciene R, Grinceviciute N, Selskis A, et al. Synthesis of hybrid graphene-porphyrin micro/nanofiber structures by ionic self-assembly. Mater Lett. 2016;164:160–164. doi:10.1016/j.matlet.2015.10.149.
  • Wei RB, Zhou LY, He YN, et al. Effect of molecular parameters on thermomechanical behavior of side-on nematic liquid crystal elastomers. Polymer. 2013;54:5321–5329. doi:10.1016/j.polymer.2013.07.057.
  • Zhao J, Pei S, Ren W, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. Acs Nano. 2010;4:5245–5252. doi:10.1021/nn1015506.
  • Meng FB, Ishida H, Liu XB. Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids. RSC Adv. 2014;4:9471–9475. doi:10.1039/c3ra47345g.
  • Yang K, Huang X, Fang L, et al. Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale. 2014;6:14740–14753. doi:10.1039/C4NR03957B.
  • Liu XY, Wei RB, Hoang PT, et al. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv Funct Mater. 2015;25:3022–3032. doi:10.1002/adfm.201500443.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.