465
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Induction of ionic smectic C phases: a systematic study of alkyl-linked guanidinium-based liquid crystals

, , , &
Pages 1135-1147 | Received 13 Jan 2016, Accepted 29 Feb 2016, Published online: 31 Mar 2016

References

  • Kaszynski P, Douglass AG. Organic derivatives of closo-boranes: a new class of liquid crystal materials. J Organomet Chem. 1999;581:28–38. doi:10.1016/S0022-328X(99)00088-1.
  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Materials. 2011;4:206–259. doi:10.3390/ma4010206.
  • Mansueto M, Laschat S. Part II. Amphiphilic liquid crystals. In: Goodby JW, Collings PJ, Kato T, et al., editors. Handbook of liquid crystals. 2nd ed. Vol. 6. Weinheim: Wiley-VCH; 2014. p. 231–280.
  • Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc. 2004;126:994–995. doi:10.1021/ja0382516.
  • Mukai T, Yoshio M, Kato T, et al. Anisotropic ion conduction in a unique smectic phase of self-assembled amphiphilic ionic liquids. Chem Commun. 2005;10:1333–1335. doi:10.1039/b414631j.
  • Hussain A, Pina AS, Roque ACA. Bio-recognition and detection using liquid crystals. Biosens Bioelectron. 2009;25:1–8. doi:10.1016/j.bios.2009.04.038.
  • Kirsch P, Bremer M. Nematic liquid crystals for active matrix displays: molecular design and synthesis. Angew Chem Int Ed. 2000;39:4216–4235. doi:10.1002/1521-3773.
  • Binnemans K. Ionic liquid crystals. Chem Rev. 2005;105:4148–4204. doi:10.1021/cr0400919.
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2006;45:38–68. doi:10.1002/anie.200501384.
  • Davis EJ, Mandle RJ, Russell BK, et al. Liquid-crystalline structure–property relationships in halogen-terminated derivatives of cyanobiphenyl. Liq Cryst. 2014;41:1635–1646. doi:10.1080/02678292.2014.940505.
  • Goodby JW, Mandle RJ, Davis EJ, et al. What makes a liquid crystal? The effect of free volume on soft matter. Liq Cryst. 2015;42:593–622. doi:10.1080/02678292.2015.1030348.
  • Rupar I, Mulligan KM, Roberts JC, et al. Elucidating the smectic A-promoting effect of halogen end-groups in calamitic liquid crystals. J Mater Chem C. 2013;1:3729–3735. doi:10.1039/c3tc30534a.
  • Li L, Jones CD, Magolan J, et al. Siloxane-terminated phenylpyrimidine liquid crystal hosts. J Mater Chem. 2007;17:2313–2318. doi:10.1039/b700972k.
  • Starkulla GF, Kapatsina E, Baro A, et al. Influence of spacer chain lengths and polar terminal groups on the mesomorphic properties of tethered 5-phenylpyrimidines. Beilstein J Org Chem. 2009;5. doi:10.3762/bjoc.5.63.
  • Lemieux RP. Molecular recognition in chiral smectic liquid crystals: the effect of core–core interactions and chirality transfer on polar order. Chem Soc Rev. 2007;36:2033–2045. doi:10.1039/b612122p.
  • Gasowska JS, Cowling SJ, Cockett MCR, et al. The influence of an alkenyl terminal group on the mesomorphic behaviour and electro-optic properties of fluorinated terphenyl liquid crystals. J Mater Chem. 2010;20:299–307. doi:10.1039/B914260F.
  • Lazarev VV, Blinov LM, Palto SP, et al. Electro-optical and ferroelectric switching of Langmuir–Blodgett films made of a chiral smectic-C* liquid crystalline compound. Thin Solid Films. 2008;516:8905–8908. doi:10.1016/j.tsf.2007.11.065.
  • Beresnev LA, Chigrinov VG, Dergachev DI, et al. Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals. Liq Cryst. 1989;5:1171–1177. doi:10.1080/02678298908026421.
  • Ujiie S, Iimura K. Ion complex type of novel chiral smectic C* liquid crystal having chiral hydrogentartrate counterion. Chem Lett. 1994;23:17–20. doi:10.1246/cl.1994.17.
  • Wu J, Ujiie S. Ionic liquid crystalline materials exhibiting smectic C phase. Mol Cryst Liq Cryst. 2012;563:67–74. doi:10.1080/15421406.2012.688617.
  • Goossens K, Lava K, Nockemann P, et al. Pyrrolidinium ionic liquid crystals with pendant mesogenic groups. Langmuir. 2009;25:5881–5897. doi:10.1021/la900048h.
  • Cui L, Sapagovas V, Lattermann G. Synthesis and thermal behaviour of liquid crystalline pyridinium bromides containing a biphenyl core. Liq Cryst. 2002;29:1121–1132. doi:10.1080/02678290210155589.
  • Santos-Martell RG, Ceniceros-Olguín A, Larios-López L, et al. Synthesis and thermotropic liquid-crystalline properties of N-alkylpyridinium bromides substituted with a terphenylene moiety. Liq Cryst. 2009;36:787–797. doi:10.1080/02678290903060618.
  • Pal SK, Kumar S. Microwave-assisted synthesis of novel imidazolium-based ionic liquid crystalline dimers. Tetrahedron Lett. 2006;47:8993–8997. doi:10.1016/j.tetlet.2006.09.167.
  • Zhang Q, Shan C, Wang X, et al. New ionic liquid crystals based on azobenzene moiety with two symmetric imidazolium ion group substituents. Liq Cryst. 2008;35:1299–1305. doi:10.1080/02678290802556211.
  • Wu B-P, Pang M-L, Tan T-F, et al. The T- phase and its “sandwich-like layer” structure as shown by ionic liquid crystals containing a biphenyl ester-based rigid-core modified by 3-alkylimidazolium salts. Liq Cryst. 2012;39:579–594. doi:10.1080/02678292.2012.668566.
  • Starkulla GF, Klenk S, Butschies M, et al. Towards room temperature ionic liquid crystals: linear versus bent imidazolium phenylpyrimidines. J Mater Chem. 2012;22:21987–21997. doi:10.1039/c2jm34595a.
  • Kohmoto S, Hara Y, Kishikawa K. Hydrogen-bonded ionic liquid crystals: pyridinylmethylimidazolium as a versatile building block. Tetrahedron Lett. 2010;51:1508–1511. doi:10.1016/j.tetlet.2010.01.045.
  • Noujeim N, Samsam S, Eberlin L, et al. Mesomorphic and ion conducting properties of dialkyl(1,4-phenylene)diimidazolium salts. Soft Matter. 2012;8:10914–10920. doi:10.1039/c2sm26213d.
  • Yang M, Stappert K, Mudring A-V. Bis-cationic ionic liquid crystals. J Mater Chem C. 2014;2:458–473. doi:10.1039/C3TC31368A.
  • Zhang L, Chen X, Zhao F, et al. Synthesis and mesomorphic properties of 2-(4′-alkoxybiphenyl-4-yl)-1H-benzimidazole derivatives. Liq Cryst. 2013;40:396–410. doi:10.1080/02678292.2012.755222.
  • Haenle JC, Neidhardt MM, Beardsworth S, et al. Cyanobiphenyl versus alkoxybiphenyl: which mesogenic unit governs the mesomorphic properties of guanidinium ionic liquid crystals? Aust J Chem. 2014;67:1088–1099. doi:10.1071/CH14376.
  • Stappert K, Mudring A-V. Triazolium based ionic liquid crystals: effect of asymmetric substitution. RSC Adv. 2015;5:16886–16896. doi:10.1039/C4RA14961K.
  • Dumez E, Snaith JS, Jackson RFW, et al. Synthesis of macrocyclic, potential protease inhibitors using a generic scaffold. J Org Chem. 2002;67:4882–4892. doi:10.1021/jo025615o.
  • Naito K. Rewritable color recording media consisting of leuco dye and biphenyl developer with a long alkyl chain. J Mater Chem. 1998;8:1379–1384. doi:10.1039/a801616j.
  • Mary A, Renko DZ, Guillou C, et al. Potent acetylcholinesterase inhibitors: design, synthesis, and structure–activity relationships of bis-interacting ligands in the galanthamine series. Bioorg Med Chem. 1998;6:1835–1850. doi:10.1016/S0968-0896(98)00133-3.
  • Li Y, Marks TJ. Organolanthanide-catalyzed intramolecular hydroamination/cyclization of aminoalkynes. J Am Chem Soc. 1996;118:9295–9306. doi:10.1021/ja9612413.
  • Butschies M, Sauer S, Kessler E, et al. Influence of N-alkyl substituents and counterions on the structural and mesomorphic properties of guanidinium salts: experiment and quantum chemical calculations. Chem Phys Chem. 2010;11:3752–3765. doi:10.1002/cphc.201000444.
  • Goodby JW. Part I. Non-chiral smectic liquid crystals. In: Goodby JW, Collings PJ, Kato T, et al., editors. Handbook of liquid crystals. 2nd ed. Vol. 4. Weinheim: Wiley-VCH; 2014. p. 59–76.
  • Gramsbergenf EF, Jeu WHD. X-ray study of the sharpness of the smectic A layer structure. Liq Cryst. 1989;4:449–455. doi:10.1080/02678298908035492.
  • Agra-Kooijman DM, Kumar S. Part III. Characterization of liquid crystals. In: Goodby JW, Collings PJ, Kato T, et al., editors. Handbook of liquid crystals. 2nd ed. Vol. 1. Weinheim: Wiley-VCH; 2014. p. 301–338.
  • Lagerwall JPF, Giesselmann F, Radcliffe MD. Optical and X-ray evidence of the “de Vries” Sm-A*–Sm-C* transition in a non-layer-shrinkage ferroelectric liquid crystal with very weak interlayer tilt correlation. Phys Rev E. 2002;66:031703. doi:10.1103/PhysRevE.66.031703.
  • Urban SUC, Przedmojski J, Czub J. X-ray studies of the layer thickness in smectic phases. Liq Cryst. 2005;32:619–624. doi:10.1080/02678290500116920.
  • Sauer S, Saliba S, Tussetschläger S, et al. p-Alkoxybiphenyls with guanidinium head groups displaying smectic mesophases. Liq Cryst. 2009;36:275–299. doi:10.1080/02678290902850027.
  • Kouwer PHJ, Swager TM. Synthesis and mesomorphic properties of rigid-core ionic liquid crystals. J Am Chem Soc. 2007;129:14042–14052. doi:10.1021/ja075651a.
  • Bradley AE, Hardacre C, Holbrey JD, et al. Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts. Chem Mater. 2002;14:629–635. doi:10.1021/cm010542v.
  • Taylor TR, Arora SL, Fergason JL. Temperature-dependent tilt angle in the smectic C phase of a liquid crystal. Phys Rev Lett. 1970;25:722–726. doi:10.1103/PhysRevLett.25.722.
  • Pelzl G, Kolbe P, Preukschas U, et al. Tilt angle determination of a smectic C phase by field-induced freedericksz transition and X ray investigations. Mol Cryst Liq Cryst. 1979;53:167–179. doi:10.1080/00268947908083993.
  • Goodby JW. A pictorial approach to helical macrostructures in smectic liquid crystals. Mol Cryst Liq Cryst Sci Technol Sect Mol Cryst Liq Cryst. 1997;292:245–263. doi:10.1080/10587259708031935.
  • Wulf A. Orientational phase transition of tilted molecules moving in a planar layer–tentative model for the smectic-C phase. Phys Rev A. 1978;17:2077–2082. doi:10.1103/PhysRevA.17.2077.
  • Bartolino R, Doucet J, Durand G. Molecular tilt in the smectic-C phase: a zigzag model. Ann Phys. 1978;3:389–396.
  • Walba DM, Clark NA. Model for the molecular origins of the polarization in ferroelectric liquid crystals. Proc SPIE. 1988;0825:81–87.
  • Walba DM, Clark NA. Molecular design of ferroelectric liquid crystals. Ferroelectrics. 1988;84:65–72. doi:10.1080/00150198808016213.
  • Walba DM, Razavi HA, Horiuchi A, et al. Evolution of the boulder model for the molecular origins of the polarization in ferroelectric liquid crystals. Ferroelectrics. 1991;113:21–36. doi:10.1080/00150199108014054.
  • McCubbin AJ, Snieckus V, Lemieux RP. Ferroelectric liquid crystals with fluoro- and aza-fluorenone cores: the effect of stereo-polar coupling. Liq Cryst. 2005;32:1195–1203. doi:10.1080/02678290500329408.
  • Glaser MA, Clark NA, Walba DM, et al. Mean field theory-based calculation of FLC polarization. Liq Cryst. 2002;29:1073–1085. doi:10.1080/02678290210145256.
  • Keller EN, Nachaliel E, Davidov D, et al. Evidence for the “zigzag” model of the smectic-C phase in the liquid crystal 4--butoxyphenylester 4-decyloxybenzoic acid (4OP10OB): a high-resolution X-ray study. Phys Rev A. 1986;34:4363–4369. doi:10.1103/PhysRevA.34.4363.
  • Jang WG, Glaser MA, Park CS, et al. Evidence from infrared dichroism, X-ray diffraction, and atomistic computer simulation for a ‘zigzag’ molecular shape in tilted smectic liquid crystal phases. Phys Rev E. 2001;64:051712. doi:10.1103/PhysRevE.64.051712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.