225
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Selective and direct detection of free amino acid using the optical birefringent patterns of confined nematic liquid crystals

&
Pages 303-311 | Received 29 Oct 2015, Accepted 31 May 2016, Published online: 20 Jun 2016

References

  • Sinhababu A, Basu S, Dey H. Modified ninhydrin reagents to detect amino acids on TLC plates. Res Chem Intermediat. 2013;41:2785–2792. doi:10.1007/s11164-013-1388-5.
  • Lee C-S, Teng P-F, Wong W-L, et al. New C2-symmetric 2,2′-bipyridine crown macrocycles for enantioselective recognition of amino acid derivatives. Tetrahedron. 2005;61:7924–7930. doi:10.1016/j.tet.2005.06.014.
  • Moreno L, Merkoçi A, Alegret S, et al. Analysis of amino acids in complex samples by using voltammetry and multivariate calibration methods. Anal Chim Acta. 2004;507:247–253. doi:10.1016/j.aca.2003.11.048.
  • Wang YQ, Ye DQ, Zhu BQ, et al. Rapid HPLC analysis of amino acids and biogenic amines in wines during fermentation and evaluation of matrix effect. Food Chem. 2014;163:6–15. doi:10.1016/j.foodchem.2014.04.064.
  • Mitić SS, Pavlović AN, Tošić SB, et al. Quantitative determination of glycine in commercial dosage forms by kinetic spectrophotometry. J Anal Chem. 2009;64:683–689. doi:10.1134/s1061934809070053.
  • Schulze WX, Mann M. A novel proteomic screen for peptide-protein interactions. J Biol Chem. 2004;279:10756–10764. doi:10.1074/jbc.M309909200.
  • Schutkowski M, Reimer U, Panse S, et al. High-content peptide microarrays for deciphering kinase specificity and biology. Angew Chem Int Ed. 2004;43:2671–2674. doi:10.1002/anie.200453900.
  • Zeng F, Ou J, Huang Y, et al. Determination of 21 free amino acids in fruit juices by HPLC using a modification of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method. Food Anal Method. 2014;8:428–437. doi:10.1007/s12161-014-9905-8.
  • Lowe AM, Abbott NL. Liquid crystalline materials for biological applications. Chem Mater. 2012;24:746–758. doi:10.1021/cm202632m.
  • Zhong S, Jang CH. Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals. Biosens Bioelectron. 2014;59:293–299. doi:10.1016/j.bios.2014.03.070.
  • Wei Y, Jang C-H. Detection of cholesterol molecules with a liquid crystal-based pH-driven sensor. J Mater Sci. 2015;50:4741–4748. doi:10.1007/s10853-015-9027-8.
  • Bi X, Hartono D, Yang K-L. Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase. Adv Funct Mater. 2009;19:3760–3765. doi:10.1002/adfm.200900823.
  • Liu D, Jang C-H. Imaging catalase reactions through interactions between liquid crystals and oil-in-water emulsions. Liq Cryst. 2013;41:163–168. doi:10.1080/02678292.2013.846421.
  • Zhang M, Jang CH. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer. Anal Biochem. 2014;455:13–19. doi:10.1016/j.ab.2014.03.018.
  • Hartono D, Xue C-Y, Yang K-L, et al. Decorating liquid crystal surfaces with proteins for real-time detection of specific protein-protein binding. Adv Funct Mater. 2009;19:3574–3579. doi:10.1002/adfm.200901020.
  • Xu H, Hartono D, Yang KL. Detecting and differentiating Escherichia colistrain TOP 10 using optical textures of liquid crystals. Liq Cryst. 2010;37:1269–1274. doi:10.1080/02678292.2010.498061.
  • Liu D, Jang C-H. A new strategy for imaging urease activity using liquid crystal droplet patterns formed on solid surfaces. Sens Actuators B. 2014;193:770–773. doi:10.1016/j.snb.2013.12.033.
  • Hu Q-Z, Jang C-H. Real-time and sensitive detection of lipase using liquid crystal droplet patterns supported on solid surfaces. Liq Crys. 2013;41:597–602. doi:10.1080/02678292.2013.868053.
  • Slavinec M, Crawford GD, Kralj S, et al. Determination of the nematic alignment and anchoring strength at the curved nematic–air interface. J Appl Phys. 1997;81:2153. doi:10.1063/1.364268.
  • Kossyrev PA, Crawford GP. The birefringent texture of nematic liquid crystals confined to capillary tubes with square cross-section. Mol Cryst Liq Cryst. 2000;351:379–385. doi:10.1080/10587250008023288.
  • Chychłowski MS, Ertman S, Nowinowski-Kruszelnicki E, et al. Escaped radial and planar liquid crystal orientation inside capillaries. Mol Cryst Liq Cryst. 2012;553:127–132. doi:10.1080/15421406.2011.609451.
  • Zhong S, Jang C-H. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid–liquid interfaces. Soft Matter. 2015;11:6999–7004. doi:10.1039/c5sm01320h.
  • Scharf T. Polarized light in liquid crystals and polymers. Hoboken (NJ): Wiley; 2006.
  • Son S-H, Kim Y, Heo MB, et al. A fluorescence turn-on probe for the detection of thiol-containing amino acids in aqueous solution and bioimaging in cells. Tetrahedron. 2014;70:2034–2039. doi:10.1016/j.tet.2014.01.060.
  • Zhou Y, Yoon J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev. 2012;41:52–67. doi:10.1039/c1cs15159b.
  • Yoon S, Jang C-H. Liquid crystal droplet patterns to monitor catalase activity at femtomolar levels. Bull Kor Chem Soc. 2014;35:2704–2710. doi:10.5012/bkcs.2014.35.9.2704.
  • Wei Y, Jang C-H. Optical imaging of cholylglycine by using liquid crystal droplet patterns on solid surfaces. J Mater Sci. 2015. doi:10.1007/s10853-015-9513-z.
  • Brake JM, Mezera AD, Abbott NL. Effect of surfactant structure on the orientation of liquid crystals at aqueous-liquid crystal interfaces. Langmuir. 2003;19:6436–6442. doi:10.1021/la034132s.
  • Bi X, Yang K-L. Immobilization of oligoglycines on aldehyde-decorated surfaces and its influence on the orientations of liquid crystals. Colloid Surface A. 2007;302:573–580. doi:10.1016/j.colsurfa.2007.03.039.
  • Bi X, Huang S, Hartono D, et al. Liquid-crystal based optical sensors for simultaneous detection of multiple glycine oligomers with micromolar concentrations. Sens Actuators B. 2007;127:406–413. doi:10.1016/j.snb.2007.04.040.
  • Kirschner DL, Green TK. Separation and sensitive detection of D-amino acids in biological matrices. J Sep Sci. 2009;32:2305–2318. doi:10.1002/jssc.200900101.
  • Priyabrata Sarkar IET, Setford SJ, Turner APF. Screen-printed amperometric biosensors for the rapid measurement of l- and d-amino acids. Analyst. 1999;124:865–870. doi:10.1039/a901404g.
  • Shigeki Yamada CH, Yoshioka R, Chibata I. Method for the racemization of optically active amino acids. J Org Chem. 1982;48:843–846. doi:10.1021/jo00154a019.
  • Mulder DJ, Schenning APHJ, Bastiaansen CWM. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J Mater Chem C. 2014;2:6695–6705. doi:10.1039/c4tc00785a.
  • Lee G, Carlton RJ, Araoka F, et al. Amplification of the stereochemistry of biomolecular adsorbates by deracemization of chiral domains in bent-core liquid crystals. Adv Mater. 2013;25:245–249. doi:10.1002/adma.201203302.
  • Jeong J, Kang L, Davidson ZS, et al. Chiral structures from achiral liquid crystals in cylindrical capillaries. Proc Natl Acad Sci USA. 2015;112:E1837–1844. doi:10.1073/pnas.1423220112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.