304
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Liquid crystalline polyaniline and phthalocyanine-based polysiloxanes bearing lateral fluoro-substituted benzoic acid groups

, , , &
Pages 1259-1268 | Received 08 Oct 2016, Accepted 22 Dec 2016, Published online: 03 Jan 2017

References

  • Peng B, Johannsmann D, Jürgen R. Polymer brushes with liquid crystalline side chains. Macromolecules. 1999;32:6759–6766. DOI:10.1021/ma981474+
  • Mercedes PM, Roser MB, Leoncio G, et al. Self-association and stereoselectivity in a chiral liquid-crystal cholesteric polymer formed under achiral conditions. Macromolecules. 2003;36:8049–8055. DOI:10.1021/ma034982e
  • Kaspar M, Bubnov A, Hamplova V, et al. Effect of lateral substitution by fluorine and bromine atoms in ferroelectric liquid crystalline materials containing a 2-alkoxypropanoate unit. Liq Cryst. 2007;34:1185–1192. DOI:10.1080/02678290701527461
  • Kishikawa K, Aikyo S, Akiyama S, et al. Realization of a lateral directional order in nematic and smectic a phases of rodlike molecules by using perfluoroarene-arene interactions. Soft Matter. 2011;7:5176–5187. DOI:10.1039/c0sm01459a
  • Berger R, Resnati G, Metrangolo P, et al. Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem Soc Rev. 2011;40:3496–3508. DOI:10.1039/c0cs00221f
  • Iwan A. Thermotropic and opto(electrical) properties of liquid crystalline imine with two fluorinated chains. J Mol Liq. 2010;157:67–72. DOI:10.1016/j.molliq.2010.08.008
  • Darmanin T, De Givenchy ET, Amigoni S, et al. Synthesis characterization and surface wettability of polythiophene derivatives containing semi-fluorinated liquid-crystalline segment. J Fluorin Chem. 2012;134:85–89. DOI:10.1016/j.jfluchem.2011.04.014
  • Frein S, Camerel F, Ziessel R, et al. Highly fluorescent liquid-crystalline dendrimers based on borondipyrromethene dyes. Chem Mater. 2009;21:3950–3959. DOI:10.1021/cm9008078
  • Zimny K, Blin JL, Stébé MJ. Ordered mesoporous silica templated by nonionic fluorinated liquid crystals. J Phys Chem C. 2009;113:11285–11293. DOI:10.1021/jp9019409
  • Piecek W, Bubnov A, Perkowski P, et al. An effect of structurally non-compatible additive on the properties of a long-pitch orthoconic antiferroelectric mixture. Phase Transit. 2010;83:551–563. DOI:10.1080/01411594.2010.499496
  • Żurowska M, Dąbrowski R, Dziaduszek J, et al. Influence of alkoxy chain length and fluorosubstitution on mesogenic and spectral properties of high tilted antiferroelectric esters. J Mater Chem. 2011;21:2144–2153. DOI:10.1039/C0JM02015J
  • Kurp K, Czerwiński M, Tykarska M, et al. Design of advanced multicomponent ferroelectric liquid crystalline mixtures with submicrometre helical pitch. Liq Cryst. 2016. DOI:10.1080/02678292.2016.1239774
  • Liu YD, Fang FF, Choi HJ. Core-shell structured semiconducting pmma/polyaniline snowman-like anisotropic microparticles and their electrorheology. Langmuir. 2010;26:12849–12854. DOI:10.1021/la101165k
  • Yin J, Xia X, Xiang L, et al. Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon. 2010;48:2958–2967. DOI:10.1016/j.carbon.2010.04.035
  • Stenika M, Pavlínek V, Sáha P, et al. Effect of hydrophilicity of polyaniline particles on their electrorheology: steadyflow and dynamic behavior. J Colloid Interf Sci. 2010;346:236–240. DOI:10.1016/j.jcis.2010.02.046
  • Liu YD, Fang FF, Choi HJ. Silica nanoparticle decorated conducting polyaniline fibers and their electrorheology. Mater Lett. 2010;64:154–156. DOI:10.1016/j.matlet.2009.10.031.
  • Kimura M, Narikawa H, Ohta K, et al. Star-shaped stilbenoid phthalocyanines. Chem Mater. 2002;14:2711–2717. DOI:10.1021/cm020222r
  • Ma P, Bai Z, Gao Y, et al. Helical nano-structures self-assembled from dimethylaminoethyloxycontaining unsymmetrical octakis-substituted phthalocyanine derivatives. Soft Matter. 2011;7:3417–3422. DOI:10.1039/c0sm01200a
  • Eichhorn H. Mesomorphic phthalocyanines, tetraazaporphyrins, porphyrins and triphenylenes as charge-transporting materials. J Porphyrins Phthalocyanines 2000;4:88–102. DOI:10.1002/(SICI)1099-1409(200001/02)4:1%3C88::AID-JPP208%3E3.0.CO;2-6
  • Cupere VD, Tant J, Viville P, et al. Effect of interfaces on the alignment of a discotic liquid-crystalline phthalocyanine. Langmuir. 2006;22:7798–7806. DOI:10.1021/la0605182
  • Venuti E, Valle RGD, Bilotti I, et al. Absorption, photoluminescence, and polarized raman spectra of a fourfold alkoxy-substituted phthalocyanine liquid crystal. J Phys Chem. C. 2011;115:12150–12157. DOI:10.1021/jp202926j
  • Smolenyak P, Peterson R, Nebesny K, et al. Highly ordered thin films of octasubstituted phthalocyanines. J Am Chem Soc. 1999;121:8628–8636. DOI:10.1021/ja991498b
  • Cabezon B, Nicolau M, Barbera J, et al. Synthesis and liquid-crystal behavior of triazolephthalocyanines. Chem Mater. 2000;12:776–781. DOI:10.1021/cm991133q
  • Stamatoiu O, Bubnov A, Tarcomnicu I, et al. Synthesis and spectral characterisation of new amido-ether schiff bases. J Mol Struct. 2008;886:187–196. DOI:10.1016/j.molstruc.2007.11.025
  • Abdy MJ, Murdoch A, Martínez-Felipe A. New insights into the role of hydrogen bonding on the liquid crystal behaviour of 4-alkoxybenzoic acids: a detailed IR spectroscopy study. Liq Cryst. 2016. DOI:10.1080/02678292.2016.1212119.
  • Paterson DA, Martinez-Felipe A, Jansze SM, et al. New insights into the liquid crystal behaviour of hydrogen-bonded mixtures provided by temperature-dependent FTIR spectroscop. Liq Cryst. 2015;42:928–939. DOI:10.1080/02678292.2015.1037122.
  • Martinez-Felipe A, Imrie CT. The role of hydrogen bonding in the phase behaviour of supramolecular liquid crystal dimers. J Mol Struct. 2015;1100:429–437. DOI:10.1016/j.molstruc.2015.07.062
  • Martinez-Felipe A, Cook AG, Wallage MJ, et al. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: a variable temperature fourier transform infrared spectroscopic study. Phase Transit. 2014;87:1191–1210. DOI:10.1080/01411594.2014.900556
  • Martinez-Felipe A, Imrie CT, Ribes-Greus A. Study of structure formation in side-chain liquid crystal copolymers by variable temperature fourier transform infrared spectroscopy. Ind Eng Chem Res. 2013;52(26):8714–8721. DOI:10.1021/ie303130e
  • Martinez-Felipe A, Lu ZB, Henderson PA, et al. Synthesis and characterisation of side chain liquid crystal copolymers containing sulfonic acid groups. Polymer. 2012;53:2604–2612. DOI:10.1016/j.polymer.2012.02.029
  • Martin SM, Yonezawa J, Horner MJ, et al. Structure and rheology of hydrogen bond reinforced liquid crystals. Chem Mater. 2004;16:3045–3055. DOI:10.1021/cm049594l
  • Martin SM, Ward MD. Lyotropic phases reinforced by hydrogen bonding. Langmuir. 2005;21:5324–5331. DOI:10.1021/la050393l
  • Shandryuk GA, Kuptsov SA, Shatalova AM, et al. Liquid crystal H-bonded polymer networks under mechanical stress. Macromolecules. 2003;36:3417–3423. DOI:10.1021/ma0257346
  • Sudha JD, Pillai CKS. Synthesis and properties of amphotropic hydrogen bonded liquid crystalline (LC) poly(ester amide)s (PEA): effect of aromatic moieties on LC behavior. Polymer. 2005;46:6986–6997. DOI:10.1016/j.polymer.2005.05.114
  • Lin HC, Hendrianto J. Synthesis and characterization of H-bonded side-chain and crosslinking LC polymers containing donor/acceptor homopolymers and copolymers. Polymer. 2005;46:12146–12157. DOI:10.1016/j.polymer.2005.10.136
  • Radmard B, Dadmun MD. The accessibility of functional groups to intermolecular hydrogen bonding in polymer blends containing a liquid crystalline polymer. Polymer. 2001;42:1591–1600. DOI:10.1016/S0032-3861(00)00533-4
  • Fitié CFC, Tomatsu I, Byelov D, et al. Nanostructured materials through orthogonal self-assembly in a columnar liquid crystal. Chem Mater. 2008;20:2394–2404. DOI:10.1021/cm703508t
  • Gayathri K, Balamurugan S, Kannan P. Self-assembly of azobenzene based side-chain liquid crystalline polymer and n-alkyloxybenzoic acids. J Chem Sci. 2011;123:255–263. DOI:10.1007/s12039-011-0083-6
  • He W, Pan G, Yang Z, et al. Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative. Adv Mater. 2009;21:2050–2053. DOI:10.1002/adma.200802927
  • Liu C, Tan Y, Li C, et al. Enhanced power-conversion efficiency in inverted bulk heterojunction solar cells using liquid-crystal-conjugated polyelectrolyte interlayer. ACS Appl Mater Interf. 2015;7:19024–19033. DOI:10.1021/acsami.5b03340
  • Yan M, Tang J, Xie H-L, et al. Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block. J Mater Chem. C. 2015;3:8526–8534. DOI:10.1039/C5TC01603G
  • Pal K, Mohan MLNM, Zhan B, et al. Design synthesis and application of hydrogen bonded smectic liquid crystal matrix encapsulated ZnO nanospikes. J Mater Chem. C. 2015;3:11907–11917. DOI:10.1039/C5TC02436F
  • Meng F, Zhang B, Liu L, et al. Liquid-crystalline elastomers produced by chemical crosslinking agents containing sulfonic acid groups. Polymer. 2003;44:3935–3943. DOI:10.1016/S0032-3861(03)00271-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.