571
Views
56
CrossRef citations to date
0
Altmetric
Articles

Lateral substituent effects on UV stability of high-birefringence liquid crystals with the diaryl-diacetylene core: DFT/TD-DFT study

, , , &
Pages 1515-1524 | Received 23 Nov 2016, Accepted 07 Feb 2017, Published online: 21 Feb 2017

References

  • Geelhaar T, Griesar K, Reckmann B. 125 years of liquid crystals – a scientific revolution in the home. Angew Chem Int Ed. 2013;52:8798–8809. DOI:10.1002/anie.201301457
  • Lee SH, Bhattacharyya SS, Jin HS, et al. Devices and materials for high-performance mobile liquid crystal displays. J Mater Chem. 2012;22:11893–11903. DOI:10.1039/C2JM30635B
  • Si GY, Zhao YH, Leong ESP, et al. Liquid-crystal-enabled active plasmonics: a review. Materials. 2014;7:1296–1317. DOI:10.3390/ma7021296
  • Chen R, An ZW, Chen XB, et al. Syntheses and properties of four-ring liquid crystals with ethylene and internal alkyne bridge. Chem J Chinese Universities. 2014;35:1433–1438. DOI:10.7503/cjcu20131233
  • Abuleil MJ, Abdulhalim I. Birefringence measurement using rotating analyzer approach and quadrature cross points. Appl Optics. 2014;53:2097–2104. DOI:10.1364/AO.53.002097
  • Chen R, Jiang Y, Li J, et al. Dielectric and optical anisotropy enhanced by 1,3-dioxolane terminal substitution on tolane-liquid crystals. J Mater Chem C. 2015;3:8706–8711. DOI:10.1039/c5tc01712b
  • Arakawa Y, Kang S, Tsuji H, et al. Development of novel bistolane-based liquid crystalline molecules with an alkylsulfanyl group for highly birefringent materials. RSC Adv. 2016;6:16568–16574. DOI:10.1039/C5RA25122B
  • Gauza S, Wang H, Wen CH, et al. High birefringence isothiocyanato tolane liquid crystals. Jpn J Appl Phys. 2003;42:3463–3466. DOI:10.1143/JJAP.42.3463
  • Dąbrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3:443–482. DOI:10.3390/cryst3030443
  • Seed AJ, Toyne KJ, Goodby JW, et al. Synthesis, transition temperatures, and optical properties of various 2,6-disubstituted naphthalenes and related 1-benzothiophenes with butylsulfanyl and cyano or isothiocyanato terminal groups. J Mater Chem. 2000;10:2069–2080. DOI:10.1039/B003818K
  • Herman J, Dziaduszek J, Dąbrowski R, et al. Novel high birefringent isothiocyanates based on quaterphenyl and phenylethynyltolane molecular cores. Liq Cryst. 2013;40:1174–1182. DOI:10.1080/02678292.2013.808768
  • Liao YM, Chen HL, Hsu CS, et al. Synthesis and mesomorphic properties of super high birefringence isothiocyanato bistolane liquid crystals. Liq Cryst. 2007;34:507–517. DOI:10.1080/02678290701223954
  • Peng ZH, Wang QD, Liu YG, et al. Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds. Liq Cryst. 2016;43(2):276–284.
  • Li F, An ZW, Chen XB, et al. Synthesis and the effect of 2,3-difluoro substitution on the properties of diarylacetylene terminated by an allyloxy group. Liq Cryst. 2015;42(11):1654–1663.
  • Kang S, Nakajima S, Arakawa Y, et al. Large extraordinary refractive index in highly birefringent nematic liquid crystals of dinaphthyldiacetylene-based materials. J Mater Chem C. 2013;1:4222–4226. DOI:10.1039/C3TC30640B
  • Miao ZC, Wang D, Zhang YM, et al. Asymmetrical phenyldiacetylenes liquid crystalline compounds with high birefringence and characteristics of selective reflection. Liq Cryst. 2012;39:1291–1296. DOI:10.1080/02678292.2012.714801
  • Zhang Z, Zhang L, Guan X, et al. Synthesis and properties of highly birefringent liquid crystalline materials: 2,5-bis(5-alkyl-2-butadinylthiophene-yl) styrene monomers. Liq Cryst. 2010;37:69–76. DOI:10.1080/02678290903370272
  • Wu ST, Neubert ME, Keast SS, et al. Wide nematic range alkenyl diphenyldiacetylene liquid crystals. Appl Phys Lett. 2000;77:957–959.
  • Arakawa Y, Kang S, Watanabe J, et al. Synthesis, phase-transition behaviors, and birefringence properties of fluorinated diphenyl-diacetylene derivatives. Chem Lett. 2014;43:1858–1860. DOI:10.1246/cl.140779
  • Neubert ME, Keast SS, Kim JM, et al. The effect of replacing a benzene ring with a saturated six-membered ring on the mesomorphic properties of 4,4ʹ-disubstituted diphenyldiacetylenes. Liq Cryst. 2004;31:175–184. DOI:10.1080/0267829032000159114
  • Kottas GS, Clarke LI, Horinek D, et al. Artificial molecular rotors. Chem Rev. 2005;105:1281–1376. DOI:10.1021/cr0300993
  • Swinburne AN, Paterson MJ, Beeby A, et al. Fluorescent twist-on sensing by induced-fit anion stabilisation of a planar chromophore. Chem – Eur J. 2010;16:2714–2718. DOI:10.1002/chem.200903293
  • Wu ST. Molecular design strategies for high birefringence liquid crystals. MRS. 2002;709:219–228.
  • Gauza S, Wen CH, Wu ST, et al. High birefringence liquid crystals for photonic applications. Proc of SPIE. 2005;5947:594706/1-594706/14. DOI:10.1117/12.613986
  • Chen R, An ZW, Wang WL, et al. Improving UV stability of tolane-liquid crystals in photonic applications by the ortho fluorine substitution. Opt Mater Express. 2016;6:97–105. DOI:10.1364/OME.6.000097
  • Kanal IY, Owens SG, Bechtel JS, et al. Efficient computational screening of organic polymer photovoltaics. J Phys Chem Lett. 2013;4:1613–1623. DOI:10.1021/jz400215j
  • Pati AK, Gharpure SJ, Mishra AK. Substituted diphenyl butadiynes: a computational study of geometries and electronic transitions using DFT/TD-DFT. Phys Chem Chem Phys. 2014;16:14015–14028. DOI:10.1039/C4CP00580E
  • Thulstrup PW, Hoffmann SV, Hansen BKV, et al. Unique interplay between electronic states and dihedral angle for the molecular rotor diphenyldiacetylene. Phys Chem Chem Phys. 2011;13:16168–16174. DOI:10.1039/C0CP02914A
  • Praveen PL, Durga PO. Photosensitivity, substituent and solvent-induced shifts in UV-visible absorption bands of naphthyl-ester liquid crystals: a comparative theoretical approach. Liq Cryst. 2014;41:872–882. DOI:10.1080/02678292.2014.882423
  • Praveen PL, Durga PO. Effect of substituent on UV-visible absorption and photostability of liquid crystals: DFT study. Phase Transitions. 2014;87:515–525. DOI:10.1080/01411594.2013.852195
  • Praveen PL, Durga PO. Semi-empirical analysis on electronic spectra and ultraviolet stability of nematic liquid crystals: effect of solvent and substituent. Liq Cryst. 2011;38:963–970. DOI:10.1080/02678292.2011.587548
  • Praveen PL, Durga PO. Optical absorption behavior and spectral shifts of fluorinated liquid crystals in ultraviolet region: A comparative study based on DFT and semiempirical approaches. J Mol Liq. 2014;194:8–12. DOI:10.1016/j.molliq.2014.01.002
  • Praveen PL, Durga PO. Calculation of spectral shifts in UV-visible region and photo stability of thermotropic liquid crystals: solvent and alkyl chain length effects. J Mol Liq. 2012;169:110–116. DOI:10.1016/j.molliq.2012.02.011
  • Arakawa Y, Kang S, Nakajima S, et al. Synthesis of new wide nematic diaryl-diacetylenes containing thiophene-based heteromonocyclic and heterobicyclic structures, and their birefringence properties. Liq Cryst. 2014;41:642–651. DOI:10.1080/02678292.2013.873492
  • Chen R, An Z, Li F, et al. Synthesis and physical properties of tolane liquid crystals containing 2,3-difluorophenylene and terminated by a tetrahydropyran moiety. Liq Cryst. 2016;43:564–572. DOI:10.1080/02678292.2015.1125959
  • Li J, Yang X, Gan N, et al. The effect of lateral fluorination on the properties of phenyl-tolane liquid crystals. Liq Cryst. 2015;42:397–403. DOI:10.1080/02678292.2014.995241
  • Kumar AS, Kommu N, Ghule VD, et al. Synthesis of trifluoromethyl-substituted N-aryl-poly-1,2,3-triazole derivatives. J Mater Chem A. 2014;2:7917–7926. DOI:10.1039/C3TA15184K
  • Arakawa Y, Kang S, Tsuji H, et al. The design of liquid crystalline bistolane-based materials with extremely high birefringence. RSC Adv. 2016;6:92845–92851. DOI:10.1039/C6RA14093A
  • Lin PT, Wu ST. UV stability of high birefringence liquid crystals. Mol Cryst Liq Cryst. 2004;411:243–253. DOI:10.1080/15421400490435233
  • Gauza S, Wen C-H, Tan B, et al. UV stable high birefringence liquid crystals. Jpn J Appl Phys. 2004;43:7176–7180. DOI:10.1143/JJAP.43.7176
  • Sekine C, Konya N, Minai M, et al. Synthesis and properties of high birefringence liquid crystals: thiophenylacetylene and benzothiazolylacetylene derivatives. Liq Cryst. 2001;28:1361–1367. DOI:10.1080/02678290110061386
  • Naoum MM, Metwally NH, Abd Eltawab MM, et al. Polarity and steric effect of the lateral substituent on the mesophase behaviour of some newly prepared liquid crystals. Liq Cryst. 2015;42:1351–1369. DOI:10.1080/02678292.2015.1049567
  • Frisch MJ, Trucks GW, Sc-Hlegel HB, et al. GAUSSIAN 09 (Revision B.01). Wallingford, CT: Gaussian, Inc.; 2010.
  • Castro ME, Percino MJ, Chapela VM, et al. Comparative theoretical study of the UV/Vis absorption spectra of styrylpyridine compounds using TD-DFT calculations. J Mol Model. 2013;19:2015–2026. DOI:10.1007/s00894-012-1602-1
  • Becke AD. Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys. 2014;140:18A301/1–18A301/18. DOI:10.1063/1.4869598
  • Wu Z, An Z, Chen X, et al. Cyclic thiourea/urea functionalized triphenylamine-based dyes for high-performance dye-sensitized solar cells. Org Lett. 2013;15:1456–1459. DOI:10.1021/ol4001685
  • Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999–3093. DOI:10.1021/cr9904009
  • Rutledge LR, McAfee SM, Welch GC. Design and computational characterization of non-fullerene acceptors for use in solution-processable solar cells. J Phys Chem A. 2014;118:7939–7951.
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100.
  • Grimme S, Brandenburg JG, Bannwarth C, et al. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys. 2015;143:054107/1–054107/19. DOI:10.1063/1.4927476
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Schmider HL, Becke AD. Optimized density functionals from the extended G2 test set. J Chem Phys. 1998;108:9624–9631.
  • Cigarini L, Vanossi D, Bondioli F, et al. A novel synthetic strategy for magnetite-type compounds. A combined experimental and DFT-computational study. Phys Chem Chem Phys. 2015;17:20522–20529. DOI:10.1039/C5CP01852H
  • Capobianco A, Velardo A, Peluso A. DFT predictions of the oxidation potential of organic dyes for opto-electronic devices. Comput Theor Chem. 2015;1070:68–75. DOI:10.1016/j.comptc.2015.07.023
  • Zhao Y, Schultz NE, Truhlar DG. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput. 2006;2:364–382. DOI:10.1021/ct0502763
  • Tawada Y, Tsuneda T, Yanagisawa S, et al. A long-range-corrected time-dependent density functional theory. J Chem Phys. 2004;120:8425–8433. DOI:10.1063/1.1688752
  • Song J-W, Hirosawa T, Tsuneda T, et al. Long-range corrected density functional calculations of chemical reactions: redetermination of parameter. J Chem Phys. 2007;126:154105. DOI:10.1063/1.2721532
  • Huang J, Du L, Hu D, et al. Theoretical analysis of excited states and energy transfer mechanism in conjugated dendrimers. J Comput Chem. 2015;36:1858. DOI:10.1002/jcc.24005
  • Carlotto S. Theoretical investigation of the open circuit voltage: p3ht/9,9ʹ-bisfluorenylidene derivative devices. J Phys Chem A. 2014;118:4808–4815. DOI:10.1021/jp503040n
  • Kirsch P, Bremer M. Nematic liquid crystals for active matrix displays: molecular design and synthesis. Angew Chem Int Ed. 2000;39:4216–4235. DOI:10.1002/1521-3773(20001201)39:23<4216::AID-ANIE4216>3.0.CO;2-K
  • Gleeson HF, Southern CD, Brimicombe PD, et al. Optical measurements of orientational order in uniaxial and biaxial nematic liquid crystals. Liq Cryst. 2010;37:949–959. DOI:10.1080/02678292.2010.488818
  • Li Z, Zhang J, Zhang W, et al. Effect of fluorine substitution on naphtho[2,1-b:3,4-b’]bis[1]-benzothiophene-derived semiconductors for transistor application. Org Electron. 2016;32:47–53. DOI:10.1016/j.orgel.2016.02.008
  • Zhang M, Guo X, Zhang S, et al. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater. 2014;26:1118–1123. DOI:10.1002/adma.201304427
  • Yang DK, Wu ST. Fundamentals of liquid crystal devices. 2nd ed. Chichester: Wiley; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.