454
Views
11
CrossRef citations to date
0
Altmetric
Articles

Enhancement of the optical absorption in cholesteric liquid crystals due to photonic effects: an experimental study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 122-128 | Received 15 Nov 2016, Accepted 28 Feb 2017, Published online: 16 Mar 2017

References

  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford: Oxford Science Publications; 1993.
  • Kopp VI, Fan B, Vithana HKM, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt Lett. 1998;23:1707–1709. DOI:10.1364/OL.23.001707
  • Kopp VI, Zhang Z-Q, Genack AZ. Lasing in chiral photonic structures. Progr Quantum Electron. 2003;27:369–416. DOI:10.1016/S0079-6727(03)00003-X
  • Blinov LM, Bartolino R, editors Liquid crystal microlasers. Trivandrum: Transworld Research Network; 2010.
  • Takezoe H. Liquid crystal lasers. In: Li Q, editor. Liquid crystals beyond displays., Hoboken (NJ): Wiley; 2012.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676–685. DOI:10.1038/NPHOTON.2010.184
  • Schmidtke J, Stille W. Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment. Eur Phys J B. 2003;31:179–194. DOI:10.1140/epjb/e2003-00022-x
  • Cao W, Palffy-Muhoray P, Taheri B, et al. Lasing thresholds of cholesteric liquid crystals lasers. Mol Cryst Liq Cryst. 2005;429:101–110. DOI:10.1080/15421400590930782
  • Yu H, Tang BY, Li J, et al. Electrically tunable lasers made from electro-optically active photonics band gap materials. Opt Express. 2005;13:7243–7249. DOI:10.1364/OPEX.13.007243
  • Sanz-Enguita G, Ortega J, Folcia CL, et al. Role of the simple thickness on the performance of cholesteric liquid crystal lasers: experimental, numerical, and analytical results. J Appl Phys. 2016;119:073102. DOI:10.1063/1.4942010
  • Park Y, Drouard E, El Daif O, et al. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt Express. 2009;17:14312–14321. DOI:10.1364/OE.17.014312
  • Peretti R, Gomard G, Lalouat L, et al. Absorption control in pseudodisordered photonic-crystal thin films. Phys Rev. 2013;88:053835. DOI:10.1103/PhysRevA.88.053835
  • Timofeev IV, Arkhipkin VG, Vetrov S, et al. Enhanced light absorption with a cholesteric liquid crystal layer. Opt Mater Express. 2013;3:496–501.
  • Dewan R, Vasilev I, Jovanov V, et al. Optical enhancement and losses of pyramid textured thin-film silicon solar cells. J Appl Phys. 2011;110:013101. DOI:10.1063/1.3602092
  • Chong TK, Wilson J, Mokkapati S, et al. Optimal wavelength scale diffraction gratings for light trapping in solar cells. J Opt. 2012;14:024012. DOI:10.1088/2040-8978/14/2/024012
  • Lee S, Kim S. Optical absorption characteristic in thin a-Si film embedded between an ultrathin metal grating and a metal reflector. IEEE Photonics J. 2013;5:4800610. DOI:10.1109/JPHOT.2013.2280339
  • Zhen GG, Xian FL, Li XY. Enhancement of light absorption in thin film silicon solar cells with metallic grating and one-dimensional photonic crystals. Chin Phys Lett. 2011;28:054213. DOI:10.1088/0256-307X/28/5/054213
  • Belyakov VA, Semenov SV. Optical edge modes in photonic liquid crystals. Jetp. 2009;109:687–699. DOI:10.1134/S106377610910015X
  • Gevorgyan AH. Mechanisms of anomalous absorption of radiation in media with periodical structure. Mol Cryst Liq Cryst. 2002;378:129–146. DOI:10.1080/10587250290090101
  • Gevorgyan AH. Anomalies of radiation absorption and superluminal propagation of light: II. A layer of a periodic medium with a helical structure. Opt Spectrosc. 2004;96:887–893. DOI:10.1134/1.1771423
  • Harutyunyan MZ, Gevorgyan AH, Mkhitaryan SA. Influence of dielectric boundaries, angle of incidence, and polarization of light on the optical properties of chiral photonic crystals. J Contemp Phys. 2007;42:271–276. DOI:10.3103/S1068337207060138
  • Gevorgyan AH. Effects of angle of incidence and polarization in the chiral photonic crystals. Opt Spectrosc. 2008;105:624–632. DOI:10.1134/S0030400X08100172
  • Moreira MF, Realaix S, Cao W, et al. Mirrorless lasing and lasing thresholds in cholesteric liquid crystals. In: Blinov LM, Bartolino R, editors. Liquid crystal microlasers. Trivandrum: Transworld Research Network; 2010.
  • Huang Y, Zhou Y, Hong Q, et al. Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser. Opt Commun. 2006;261:91–96. DOI:10.1016/j.optcom.2005.11.049
  • Matsuhisa Y, Huang Y, Zhou Y, et al. Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal. Appl Phys Lett. 2007;90:091114. DOI:10.1063/1.2710777
  • Lub J, Nijssen WPM, Wegh RT, et al. Photoisomerizable chiral compounds derived from isosorbide and cinnamic acid. Liq Cryst. 2005;32:1031–1044. DOI:10.1080/02678290500284017
  • Penninck L, Beeckman J, De Visschere P, et al. Light emission from dye-doped cholesteric liquid crystals at oblique angles: simulation and experiment. Phys Rev E. 2012;85:041702. DOI:10.1103/PhysRevE.85.041702
  • Berreman DW. Optics in stratified and anisotropic media: 4x4-matrix formulation. J Opt Soc Am. 1972;62:502–510. DOI:10.1364/JOSA.62.000502

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.