123
Views
7
CrossRef citations to date
0
Altmetric
Articles

Computer simulation of confined prolate hard spherocylinder liquids between hard walls

&
Pages 262-269 | Received 27 Jan 2017, Accepted 07 Apr 2017, Published online: 21 Apr 2017

References

  • McGrother SC, Williamson DC, Jackson G. A re‐examination of the phase diagram of hard spherocylinders. J Chem Phys. 1996;104:6755–6771. DOI:10.1063/1.471343
  • Wu L, Malijevský A, Jackson G, et al. Orientational ordering and phase behaviour of binary mixtures of hard spheres and hard spherocylinders. J Chem Phys. 2015;143:044906. DOI:10.1063/1.4923291
  • Onsager L. Anisotropic solutions of colloids (abstract). Phys Rev. 1942;62:558–559.
  • Onsager L. The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci. 1949;51:627–659. DOI:10.1111/j.1749-6632.1949.tb27296.x
  • Hansen-Goos H, Mecke K. Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. Phys Rev Lett. 2009;102:018302. DOI:10.1103/PhysRevLett.102.018302
  • Wittmann R, Marechal M, Mecke K. Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape. J Phys Condens Matter. 2016;28:244003. DOI:10.1088/0953-8984/28/24/244003
  • Vieillard-Baron J. The equation of state of a system of hard spherocylinders. Mol Phys. 1974;28:809–818. DOI:10.1080/00268977400102161
  • Frenkel D. Computer simulation of hard-core models for liquid crystals. Mol Phys. 1987;60:1–20. DOI:10.1080/00268978700100011
  • Frenkel D. Structure of hard-core models for liquid crystals. J Phys Chem. 1988;92:3280–3284. DOI:10.1021/j100322a042
  • Frenkel D, Lekkerkerker HNW, Stroobants A. Thermodynamic stability of a smectic phase in a system of hard rods. Nature. 1988;332:822–823. DOI:10.1038/332822a0
  • Bolhuis P, Frenkel D. Tracing the phase boundaries of hard spherocylinders. J Chem Phys. 1997;106:666–687. DOI:10.1063/1.473404
  • Jerome B. Surface effects and anchoring in liquid crystals. Rep Prog Phys. 1991;54:391–451. DOI:10.1088/0034-4885/54/3/002
  • Jerome B. Physical properties. In: Demus D, Goodby J, Gray GW, editors. Handbook of liquid crystals. Vol. 1. Fundamentals. Weinheim: Wiley; 1998. p. 535–548.
  • Somoza AM, Mederos L, Sullivan DE. Wetting and layering transitions in liquid crystals. Phys Rev E. 1995;52:5017–5027. DOI:10.1103/PhysRevE.52.5017
  • Sluckin TJ. Anchoring transitions at liquid crystal surfaces. Physica A. 1995;213:105–109. DOI:10.1016/0378-4371(94)00151-I
  • Telo Da Gama MM. Phase transitions in liquid crystal films. Physica A. 1991;172:219–224. DOI:10.1016/0378-4371(91)90322-4
  • Rodríguez-Ponce I, Romero-Enrique JM, Velasco E, et al. Interplay between anchoring and wetting at a nematic-substrate interface. Phys Rev Lett. 1999;82:2697–2700. DOI:10.1103/PhysRevLett.82.2697
  • Shalaginov AN, Sullivan DE. Landau–de Gennes theory of surface-enhanced ordering in smectic films. Phys Rev E. 2001;63:031704. DOI:10.1103/PhysRevE.63.031704
  • Gruhn T, Schoen M. Microscopic structure of molecularly thin confined liquid-crystal films. Phys Rev E. 1997;55:2861–2875. DOI:10.1103/PhysRevE.55.2861
  • Gruhn T, Schoen M. Substrate-induced order in confined nematic liquid-crystal films. J Chem Phys. 1998;108:9124–9136. DOI:10.1063/1.476359
  • Chiccoli C, Guzzetti S, Pasini P, et al. Computer simulations of nematic displays. Mol Cryst Liq Cryst. 2001;360:119–129. DOI:10.1080/10587250108025702
  • Priezjev NV, Skačej G, Pelcovits RA, et al. External and intrinsic anchoring in nematic liquid crystals: a Monte Carlo study. Phys Rev E. 2003;68:041709. DOI:10.1103/PhysRevE.68.041709
  • Memmer R, Fliegans O, Koke CD, et al. Monte Carlo simulation of twisted nematic and supertwisted nematic liquid crystal cells. Phys Chem Chem Phys. 2003;5:558–566. DOI:10.1039/B207686A
  • Van Roij R, Dijkstra M, Evans R. Interfaces, wetting and capillary nematization of a hard-rod fluid: theory for the Zwanzig model. J Chem Phys. 2000;113:7689–7701. DOI:10.1063/1.1288903
  • Poniewierski A, Holyst R. Nematic alignment at a solid substrate: the model of hard spherocylinders near a hard wall. Phys Rev A. 1988;38:3721–3727. DOI:10.1103/PhysRevA.38.3721
  • Mao Y, Bladon P, Lekkerkerker HNW, et al. Density profiles and thermodynamics of rod-like particles between parallel walls. Mol Phys. 1997;92:151–159. DOI:10.1080/00268979709482083
  • Van Roij R, Dijkstra M, Evans R. Orientational wetting and capillary nematization of hard-rod fluids. Eur Phys Lett. 2000;49:350–356. DOI:10.1209/epl/i2000-00155-0
  • Dijkstra M, Van Roij R, Evans R. Wetting and capillary nematization of a hard-rod fluid: a simulation study. Phys Rev E. 2001;63:051703. DOI:10.1103/PhysRevE.63.051703
  • De las Heras D, Velasco E, Mederos L. Capillary effects in a confined smectic phase of hard spherocylinders: influence of particle elongation. Phys Rev E. 2006;74:011709. DOI:10.1103/PhysRevE.74.011709
  • Geigenfeind T, Rosenzweig S, Schmidt M, et al. Confinement of two-dimensional rods in slit pores and square cavities. J Chem Phys. 2015;142:174701. DOI:10.1063/1.4919307
  • Hansen-Goos H, Mecke K. Tensorial density functional theory for non-spherical hard-body fluids. J Phys Condens Matter. 2010;22:364107. DOI:10.1088/0953-8984/22/36/364107
  • Wittmann R, Marechal M, Mecke K. Fundamental measure theory for smectic phases: scaling behavior and higher order terms. J Chem Phys. 2014;141:064103. DOI:10.1063/1.4891326
  • Wittmann R, Marechal M, Mecke K. Fundamental mixed measure theory for non-spherical colloids. Europhys Lett. 2015;109:26003. DOI:10.1209/0295-5075/109/26003
  • Wittmann R, Mecke K. Surface tension of isotropic-nematic interfaces: fundamental measure theory for hard spherocylinders. J Chem Phys. 2014;140:104703. DOI:10.1063/1.4867277
  • Wittmann R, Marechal M, Mecke K. Elasticity of nematic phases with fundamental measure theory. Phys Rev E. 2015;91:052501. DOI:10.1103/PhysRevE.91.052501
  • Allen MP, Tildesley DJ. Computer simulations of liquids. Oxford: Oxford University Press; 1987.
  • Allen MP, Evans GT, Frenkel D, et al. Hard convex body fluids. In: I. Prigogine, Stuart A. Rice, Editors. Advances in chemical physics. New York (NY): John Wiley and Sons; 1993. p. 1–166. DOI:10.1002/9780470141458
  • Vega C, Lago S. A fast algorithm to evaluate the shortest distance between rods. Comput Chem. 1994;18:55–59. DOI:10.1016/0097-8485(94)80023-5
  • Barmes F, Cleaver DJ. Using particle shape to induce tilted and bistable liquid crystal anchoring. Phys Rev E. 2005;71:021705. DOI:10.1103/PhysRevE.71.021705
  • Eppenga R, Frenkel D. Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys. 1984;52:1303–1334. DOI:10.1080/00268978400101951
  • Zhou X, Chen H, Iwamoto M. Orientational orders of small anisotropic molecules confined in slit pores. J Chem Phys. 2004;120:5322–5326. DOI:10.1063/1.1647517
  • Barmes F, Cleaver DJ. Computer simulation of a liquid-crystal anchoring transition. Phys Rev E. 2004;69:061705. DOI:10.1103/PhysRevE.69.061705

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.