976
Views
15
CrossRef citations to date
0
Altmetric
Invited Article

Discotic liquid crystals derived from polycyclic aromatic cores: from the smallest benzene to the utmost graphene cores

, &
Pages 1990-2017 | Received 31 Mar 2017, Published online: 02 May 2017

References

  • Collings PJ. Liquid crystals: nature’s delicate phase of matter. Bristol: Princeton University Press; 2002.
  • Goodby JW. The nanoscale engineering of nematic liquid crystals for displays. Liq Cryst. 2011;38:1363–1387.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47:2754–2787.
  • Hamley IW. Liquid crystal phase formation by biopolymers. Soft Matter. 2010;6:1863–1871.
  • Reinitzer F. Beitrage zur Kenntniss des Cholesterins. 1888;9:421, for English translation see Liq Cryst. Monatsh Chem. 1989;5:7–18.
  • Chandrasekhar S, Sadashiva BK, Suresh KA. Liquid crystals of disc-like molecules. Pramana. 1977;9:471−480.
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35:83–109.
  • Kawata K. Orientation control and fixation of discotic liquid crystal. Chem Rec. 2002;2:59–80.
  • Bisoyi HK, Kumar S. Discotic nematic liquid crystals: science and technology. Chem Soc Rev. 2010;39:264–285.
  • Kumar S, Varshney SK. A room-temperature discotic nematic liquid crystal. Angew Chem Int Ed. 2000;112:3270–3272.
  • Kumar S. Molecular engineering of discotic nematic liquid crystals. Pramana. 2003;61:199–203.
  • Nair GG, Rao DSS, Prasad SK, et al. Electrooptic and viewing angle characteristics of a display device employing a discotic nematic liquid crystal. Mol Cryst Liq Cryst. 2003;397:245–252.
  • Feng X, Marcon V, Pisula W, et al. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nature Mater. 2009;8:421–426.
  • Markovitsi D, Marguet S, Bondkowski J, et al. Triplet excitation transfer in triphenylene columnar phases. J Phys Chem B. 2001;105:1299–1306.
  • van de Craats AM, Warman JM. The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv Mater. 2001;13:130–133.
  • Bushby RJ, Lozman OR. Photoconducting liquid crystals. Curr Opi Sol State Mat Sci. 2002;6:569–578.
  • Pisula W, MüLlen K. Discotic liquid crystals as organic semiconductors. In: Goodby JW, Collings PJ, Kato T, et al., editor. Handbook of liquid crystals. Vol. 8. Weinheim: Wiley-VCH; 2014. p. 627−674.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902−1929.
  • Kumar S. Functional discotic liquid crystals. Israel J Chem. 2012;52:820–829.
  • Kumar S. Chemistry of discotic liquid crystals: from monomers to polymers. Boca Raton (FL): CRC press; 2011.
  • Bisoyi HK, Kumar S. Carbon-based liquid crystals: art and science. Liq Cryst. 2011;38:1427–1449.
  • Bushby RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426.
  • Pisula W, Feng X, MüLlen K. Charge-carrier transporting graphene-type molecules. Chem Mater. 2010;23:554–567.
  • Kumar S. Playing with discs. Liq Cryst. 2009;36:607–638.
  • Tschierske C. Liquid crystal engineering–new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem Soc Rev. 2007;36:1930–1970.
  • Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chem Rev. 2007;107:718–747.
  • Laschat S, Baro A, Steinke N, et al. Liquid crystals: from tailor‐made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832.
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid‐crystalline assemblies: self‐organized soft materials. Angew Chem Int Ed. 2006;45:38–68.
  • Ohta K, Hatsusaka K, Sugibayashi M, et al. Discotic liquid crystalline semiconductors. Mol Cryst Liq Cryst. 2003;397:25–45.
  • Percec V, Glodde M, Bera TK, et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature. 2002;419:384–387.
  • Kumar M, Gowda A, Kumar S. Discotic liquid crystals with graphene: supramolecular self-assembly to applications. Part Part Syst Characterization. 2017;1700003. DOI:10.1002/ppsc.201700003
  • Kumar M, Kumar S. Liquid crystals in photovoltaics: a new generation of organic photovoltaics. Nature Poly J. 2017;49:85–111.
  • Kumar S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater. 2014;6:e82.
  • Brooks JD, Taylor GH. Formation of graphitizing carbons from the liquid phase. Nature. 1965;206:697–699.
  • Otani S. Carbonaceous mesophase and carbon fibers. Mol Cryst Liq Cryst. 1981;63:249–263.
  • Cammidge AN, Bushby RJ. Handbook of liquid crystals. In: Demus D, Goodby JW, Gray GW, et al., editors. Vol. 2B. Weinheim, Germany: Wiley-VCH; 1998. p. 692–748.
  • Kumar S Handbook of liquid crystals. Goodby JW, Collings PJ, Kato T, et al., editors. Vol. 4, Weinheim, Germany: Wiley-VCH; 2014. p. 467–520.
  • Chandrasekhar S, Prasad SK, Nair GG, et al. ‘Euro Display’ 99, 19th international Display Research Conference, late-news. 1999. p. 9–11.
  • Ito S, Inabe H, Morita N, et al. Synthesis of poly(6-azulenylethynyl)benzene derivatives as a multielectron redox system with liquid crystalline behavior. J Am Chem Soc. 2003;125:1669–1680.
  • Ito S, Ando M, Nomura A, et al. Synthesis and properties of hexakis(6-octyl-2-azulenyl)benzene as a multielectron redox system with liquid crystalline behavior. J Org Chem. 2005;70:3939–3949.
  • Hanabusa K, Koto C, Kimura M, et al. Remarkable viscoelasticity of organic solvents containing trialkyl-1,3,5-benzenetricarboxamides and their intermolecular hydrogen bonding. Chem Lett. 1997;5:429–430.
  • Yasuda Y, Iishi E, Inada H, et al. Novel low-molecular-weight organic gels: N,N′,N″-tristearyltrimesamide/organic solvent system. Chem Lett. 1996;4:575–576.
  • Shikata T, Kuruma Y, Sakamoto A, et al. Segment sizes of supramolecular polymers of N,N′,N′′-tris(3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide in n-Decane. J Phys Chem B. 2008;112:16393–16402.
  • Sakamoto A, Ogata D, Shikata T, et al. Large macro-dipoles generated in a supramolecular polymer of N, N′, N″-tris(3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide in n-decane. Polymer. 2006;47:956–960.
  • Shi NE, Dong H, Yin G, et al. A smart supramolecular hydrogel exhibiting pH-modulated viscoelastic properties. Adv Funct Mater. 2007;17:1837–1843.
  • Bernet A, Albuquerque RQ, Behr M, et al. Formation of a supramolecular chromophore: a spectroscopic and theoretical study. Soft Matter. 2012;8:66–69.
  • Timme A, Kress R, Albuquerque RQ, et al. Phase behavior and mesophase structures of 1,3,5-benzene- and 1,3,5-cyclohexanetricarboxamides: towards an understanding of the losing order at the transition into the isotropic phase. Chem Eur J. 2012;18:8329–8339.
  • Shishido Y, Anetai H, Takeda T, et al. Molecular assembly and ferroelectric response of benzenecarboxamides bearing multiple −CONHC14H29 chains. J Phys Chem C. 2014;118:21204−21214.
  • Invernizzi C, Dalvit C, Stoeckli-Evans H, et al. Synthesis and NMR spectroscopic study of the self-aggregation of 2-substituted benzene-1,3,5-tricarboxamides. Eur J Org Chem. 2015;2015:5115–5127.
  • Garcia-Iglesias M, De Waal BFM, De Feijter I, et al. Nanopatterned superlattices in self-assembled C2-symmetric oligodimethylsiloxane-based benzene-1,3,5-Tricarboxamides. Chem Eur J. 2015;21:377–385.
  • Sander F, Tussetschläger S, Sauer S, et al. Wedge-shaped 1,2-diamidobenzenes forming columnar mesophases via hydrogen bonding. Liq Cryst. 2012;39:303–312.
  • Lee JH, Jang I, Hwang SH, et al. Self-assembled discotic nematic liquid crystals formed by simple hydrogen bonding between phenol and pyridine moieties. Liq Cryst. 2012;39:973–981.
  • Xie Z, He H, Deng Y, et al. Three-arm star compounds composed of 1,3,5-tri(azobenzeneethynyl)benzene cores and flexible PEO arms: synthesis, optical functions, hybrid Ormosil gel glasses. J Mater Chem C. 2013;1:1791–1797.
  • Chen -H-H, Lin H-A, Chien S-C, et al. Single-component room-temperature discotic nematic liquid crystals formed by introducing an attraction-enhancing in-plane protrusion onto the hexa(phenylethynyl)benzene core. J Mater Chem. 2012;22:12718–12722.
  • Lee S-L, Lin H-A, Lin Y-H, et al. Gearing of molecular swirls: columnar packing of nematogenic hexakis(4- alkoxyphenylethynyl)benzene derivatives. Chem Eur J. 2011;17:792–799.
  • Bushby RJ, Lozman OR. Discotic liquid crystals 25 years on. Curr Opin Coll Interface Sci. 2002;7:343–354.
  • Billard J, Dubois JC, Tinh NH, et al. A disc-like mesophase. Nouv J Chem. 1978;2:535–540.
  • Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst. 2004;31:1037–1059.
  • Kumar S. Triphenylene‐based discotic liquid crystal dimers, oligomers and polymers. Liq Cryst. 2005;32:1089–1113.
  • Pal SK, Setia S, Avinash BS, et al. Triphenylene-based discotic liquid crystals: recent advances. Liq Cryst. 2013;40:1769–1816.
  • Pal SK, Kumar S. Liquid crystal dimers. Cambridge (UK): Cambridge university press; 2017.
  • Zhao K-Q, Bai X-Y, Xiao B, et al. Star-shaped triphenylene discotic liquid crystalline oligomers and their hydrogen-bonded supramolecular complexes with simple acids. J Mater Chem C. 2015;3:11735–11746.
  • Bai Y-F, Bao L, Hu P, et al. Copper-free click chemistry between azides and internal alkynes for triphenylene discotic liquid crystal trimer formation. Liq Cryst. 2013;40:97–105.
  • Thevenet D, Neier R. Click chemistry applied in the synthesis of symmetrical triphenylene-based discotic liquid-crystalline dimers. Synthesis. 2011;2011:3801–3806.
  • Bhalla V, Singh H, Kumar M, et al. Triazole-modified triphenylene derivative: self-assembly and sensing applications. Langmuir. 2011;27:15275–15281.
  • Cho B-K, Kim S-H. Supramolecular transformation from ordered columnar to disordered columnar to tetragonal micellar structures in clicked dodeca-alkylated discotic triphenylene liquid crystals. Soft Matter. 2014;10:553–559.
  • Basak D, Christensen S, Surampudi SK, et al. Proton conduction in discotic mesogens. Chem Commun. 2011;47:5566–5568.
  • Yang F, Zhang Y, Guo H, et al. Novel supramolecular liquid crystal: synthesis of cyclodextrin–triphenylene column liquid crystal based on click chemistry. Tetrahedron Lett. 2013;54:4953–4956.
  • Morimoto K, Dohi T, Kita Y. Oxidative trimerization of catechol to hexahydroxytriphenylene. Eur J Org Chem. 2013;2013:1659–1662.
  • Boden N, Bushby RJ, Cammidge AN, et al. The creation of long-lasting glassy columnar discotic liquid crystals using ‘dimeric’ discogens. J Mater Chem. 1999;9:1391–1402.
  • Bushby RJ, Lu Z. Isopropoxy as a masked hydroxyl group in aryl oxidative coupling reaction. Synthesis. 2001;2001:763–767.
  • Kumar S, Lakshmi B. A convenient and economic method for the synthesis of monohydroxy-pentaalkoxy- and hexaalkoxytriphenylene discotics. Tetrahedron Lett. 2005;46:2603–2605.
  • Kumar S, Manickam M. Synthesis of functionalized triphenylenes By selective ether cleavage with B-bromocatechol borane. Synthesis. 1998;1998:1119–1122.
  • Pal SK, Bisoyi HK, Kumar S. Synthesis of monohydroxy-functionalized triphenylene discotics: green chemistry approach. Tetrahedron. 2007;63:6874–6878.
  • Kong X, He Z, Gopee H, et al. Improved synthesis of monohydroxytriphenylenes (MHTs)- important precursors to discotic liquid crystal families. Tetrahedron Lett. 2011;52:77–79.
  • Wu H, Zhang C, Pu J, et al. A convenient synthesis method of 3,6- dihydroxy-2,7,10,11-tetrapentyloxytriphenylene from 4,4′-dihydroxybiphenyl with high yield. Liq Cryst. 2014;41:1173–1178.
  • Zelcer A, Cecchi F, Alborés P, et al. A convenient synthesis of a 2,7-difunctional tetra(alkoxy)triphenylene involving 4,4′- diacetoxy-3,3′-dialkoxybiphenyl as a key precursor and its conversion to extended hybrid mesogenic compounds. Liq Cryst. 2013;40:1121–1134.
  • Yang F, Guo H, Xie J, et al. Synthesis of calixarene-linked discotic triphenylene. Eur J Org Chem. 2011;2011:5141–5145.
  • Yang F, Xu B, Guo H, et al. Novel symmetrical triads of triphenylene-calix[4]arene-triphenylene: synthesis and mesomorphism. Tetrahedron Lett. 2012;53:1598–1602.
  • Yang F, Bai X, Guo H, et al. Ion complexation-induced mesomorphic conversion between two columnar phases of novel symmetrical triads of triphenylene-calix[4]arene-triphenylenes. Tetrahedron Lett. 2013;54:409–413.
  • Yang F, Yuan J, Li C, et al. Novel triphenylene derivatives with acylthiosemicarbazide group: studies the influence of multiple H-bonding on mesomorphic properties. Liq Cryst. 2014;41:137–143.
  • Han B, Hu P, Wang B-Q, et al. Triphenylene discotic liquid crystal trimers synthesized by Co2(CO)8-catalyzed terminal alkyne [2 + 2 + 2] cycloaddition. Beilstein J Org Chem. 2013;9:2852–2861.
  • Herbaut AJ, Baranoff E. A triphenylene-based small molecule compatibiliser using incompatible pendent chains. RSC Adv. 2016;6:10655–10661.
  • Pan S, Mu B, Zhou Y, et al. Competition and compromise between discotic and calamitic mesogens in triphenylene and azobenzene based shape-amphiphilic liquid crystals. RSC Adv. 2016;6:49556–49566.
  • Kumar S, Gupta SK. Novel triphenylenoimidazole discotic liquid crystals. Tetrahedron Lett. 2011;52:5363–5367.
  • Gupta M, Pal SK. Triphenylene-based room-temperature discotic liquid crystals: a new class of blue-light-emitting materials with long-range columnar self-assembly. Langmuir. 2016;32:1120−1126.
  • Bai Y-F, Chen L-Q, Hu P, et al. Synthesis and characterisation of 3-armed dendritic molecules with triphenylbenzene or triphenyltriazine as core and triphenylene derivative as shells. Liq Cryst. 2015;42:1591–1600.
  • Zhao K-Q, Gao Y, Yu W-H, et al. Discogens possessing aryl side groups synthesized by suzuki coupling of triphenylene triflates and their self-organization behavior. Eur J Org Chem. 2016;2016:2802–2814.
  • Kong X, He Z, Gopee H, et al. Synthesis and liquid crystal properties of triphenylene liquid crystals bearing polymerisable acrylate and methacrylate groups. Liq Cryst. 2011;38:943–955.
  • Stoeva Z, Lu Z, Ingram MD, et al. A new polymer electrolyte based on a discotic liquid crystal triblock copolymer. Electrochimica Acta. 2013;93:279–286.
  • Feng C, Tian X-L, Zhou J, et al. A convenient tandem one-pot synthesis of donor–acceptor-type triphenylene 2,3-dicarboxylic esters from diarylacetylene. Org Biomol Chem. 2014;12:6977–6981.
  • Tanaka D, Ishiguro H, Shimizu Y, et al. Thermal and photoinduced liquid crystalline phase transitions with a rod–disc alternative change in the molecular shape. J Mater Chem. 2012;22:25065–25071.
  • Zhang L, Hughes DL, Cammidge AN. Discotic triphenylene twins linked through thiophene bridges: controlling nematic behavior in an intriguing class of functional organic materials. J Org Chem. 2012;77:4288−4297.
  • Gopee H, Kong X, He Z, et al. Expanded porphyrin-like structures based on twinned triphenylenes. J Org Chem. 2013;78:9505−9511.
  • Kong X, He Z, Zhang Y, et al. A mesogenic triphenylene-perylene- triphenylene triad. Org Lett. 2011;13:764–767.
  • Xiao W, He Z, Remiro-Buenamanana S, et al. A π–extended donor-acceptor-donor triphenylene twin linked via a pyrazine bridge. Org Lett. 2015;17:3286–3289.
  • Al-Lawati ZH, Alkhairalla B, Bramble JP, et al. Alignment of discotic lyotropic liquid crystals at hydrophobic and hydrophilic self-assembled monolayers. J Phys Chem C. 2012;116:12627−12635.
  • Gopee H, Cammidge AN, Oganesyann VS. Probing columnar discotic liquid crystals by EPR spectroscopy with a rigid-core nitroxide spin probe. Angew Chem. 2013;125:9085–9088.
  • Bushby RJ, Kelly SM, O’Neill M. Liquid crystalline semiconductors: materials, properties and applications. Vol. 169. Dordrecht, The Netherlands: Springer; 2013.
  • Haverkate LA, Zbiri M, Johnson MR, et al. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex. J Chem Phys. 2014;140:014903.
  • Haverkate LA, Zbiri M, Johnson MR, et al. Conformation, defects, and dynamics of a discotic liquid crystal and their influence on charge transport. J Phys Chem B. 2011;115:13809–13816.
  • Park JH, Kim KH, Park YW, et al. Ultra long ordered nanowires from the concerted self-assembly of discotic liquid crystal and solvent molecules. Langmuir. 2015;31:9432−9440.
  • Gayathri HN, Kumar B, Suresh KA, et al. Charge transport in a liquid crystalline triphenylene polymer monolayer at air–solid interface. Phys Chem Chem Phys. 2016;18:12101–12107.
  • Kumar S, Laxminarayanan V. Inclusion of gold nanoparticles into a discotic liquid crystalline matrix. Chem Commun. 2004;14:1600–1601.
  • Kumar S, Pal SK, Kumar PS, et al. Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter. 2007;3:896–900.
  • Mishra M, Kumar S, Dhar R. Effect of dispersed colloidal gold nanoparticles on the electrical properties of a columnar discotic liquid crystal. RSC Adv. 2014;4:62404–62412.
  • Shen Z, Yamada M, Miyake M. Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands. J Am Chem Soc. 2007;129:14271–14280.
  • Holt LA, Bushby RJ, Evans SD, et al. A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w∕ w) gold nanoparticles. J Appl Phys. 2008;103:063712.
  • Supreet, Pratibha R, Kumar S, et al. Effect of dispersion of gold nanoparticles on the optical and electrical properties of discotic liquid crystal. Liq Cryst. 2014;41:933–939.
  • Mishra M, Kumar S, Dhar R. Gold nanoparticles in plastic columnar discotic liquid crystalline material. Thermochimica Acta. 2016;631:59–70.
  • Mukesh M, Kumar S, Dhar R. High concentration of colloidal gold nanoparticles on the thermodynamic, optical and electrical properties of 2, 3, 6, 7, 10, 11-hexabutyloxytryphenylene discotic liquid crystalline material. Soft Materials. 2017;15:34–44.
  • Yaduvanshi P, Kumar S, Dhar R. Effects of copper nanoparticles on the thermodynamic, electrical and optical properties of a disc-shaped liquid crystalline material showing columnar phase. Phase Transitions. 2015;88:489–502.
  • Yaduvanshi P, Mishra A, Kumar S, et al. Enhancement in the thermodynamic, electrical and optical properties of hexabutoxytriphenylene due to copper nanoparticles. J Mol Liq. 2015;208:160–164.
  • Yaduvanshi P, Mishra A, Kumar S, et al. Effect of silver nanoparticles on frequency and temperature-dependent electrical parameters of a discotic liquid crystalline material. Liq Cryst. 2015;42:1478–1489.
  • Kumar S, Sagar LK. CdSe quantum dots in a columnar matrix. Chem Commun. 2011;47:12182–12184.
  • Kumar M, Kumar S. Luminescent CdTe quantum dots incarcerated in a columnar matrix of discotic liquid crystals for optoelectronic applications. RSC Adv. 2015;5:1262–1267.
  • Zlateva G, Zhelev Z, Bakalova R, et al. Precise size control and synchronized synthesis of six colors of CdSe quantum dots in a slow-increasing temperature gradient. Inorg Chem. 2007;46:6212–6214.
  • Wuister SF, Swart I, Driel FV, et al. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003;3:503–507.
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12:1387–1412.
  • Nealon GL, Greget R, Dominguez C, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J Org Chem. 2012;8:349–370.
  • Stamatoiu O, Mirzaei J, Feng X, et al. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. Top Curr Chem. 2012;318:331–393.
  • Umadevi S, Ganesh V, Hegmann T. Nanoparticles: additives and building blocks for liquid crystal phases. In: Goodby JW, Collings PJ, Kato T, et al., editors. Handbook of liquid crystals. Vol. VI. Weinheim, Germany: Wiley-VCH; 2014. p. 27–76.
  • Avinash BS, Lakshminarayanan V, Kumar S, et al. Gold nanorods embedded discotic nanoribbons. Chem Commun. 2013;49:978–980.
  • Kumar S, Bisoyi HK. Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew Chem In Ed. 2007;46:1501–1503.
  • Bisoyi HK, Kumar S. Carbon nanotubes in triphenylene and rufigallol based room temperature monomeric and polymeric discotic liquid crystals. J Mater Chem. 2008;18:3032–3039.
  • Lee JJ, Yamaguchi A, Alam MA, et al. Discotic ionic liquid crystals of triphenylene as dispersants for orienting single-walled carbon nanotubes. Angew Chem Int Ed. 2012;51:8490–8494.
  • Fukushima T, Kosaka A, Ishimura Y, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science. 2003;300:2072–2074.
  • Fukushima T, Kosaka A, Yamamoto Y, et al. Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small. 2006;2:554–560.
  • Fukushima T, Aida T. Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J. 2007;13:5048.
  • Jeong S, Kwon Y, Choi BD, et al. Improved efficiency of bulk heterojunction poly (3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives. Appl Phys Lett. 2010;96:183305.
  • Zheng Q, Fang G, Bai W, et al. Efficiency improvement in organic solar cells by inserting a discotic liquid crystal. Sol Energy Mater Sol Cells. 2011;95:2200–2205.
  • Bajpai M, Yadav N, Kumar S, et al. Bulk heterojunction solar cells based on self-assembling disc-shaped liquid crystalline material. Liq Cryst. 2016;43:305–313.
  • Bajpai M, Yadav N, Kumar S, et al. Incorporation of liquid crystalline triphenylene derivative in bulk heterojunction solar cell with molybdenum oxide as buffer layer for improved efficiency. Liq Cryst. 2016;43:928–936.
  • Bajpai M, Yadav N, Kumar S, et al. Bulk heterojunction solar cells made from carbazole copolymer and fullerene derivative with an inserted layer of discotic material with improved efficiency. Liq Cryst. 2017;44:379–386.
  • Shi Y, Tan L, Chen Y. Dye-sensitized nanoarrays with discotic liquid crystals as interlayer for high-efficiency inverted polymer solar cells. Appl Mater Interfaces. 2014;6:17848–17856.
  • Chen X, Chen L, Chen Y. Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells. RSC Adv. 2014;4:3627–3632.
  • Selvaraj ARK, Lakshminarayanan V, Dhar R, et al. Dye-sensitised solar cells with iodine-free discotic electrolytes. Liq Cryst. 2015;42:1815–1822.
  • Wang H, Xu X, Kojtari A, et al. Triphenylene nano/microwires for sensing nitroaromatics. J Phys Chem C. 2011;115:20091–20096.
  • Arora H, Pramanik S, Kumar M, et al. “Not quenched” aggregates of a triphenylene derivative for the sensitive detection of trinitrotoluene in aqueous medium. New J Chem. 2016;40:3187–3193.
  • Tripathi P, Mishra M, Kumar S, et al. Thermodynamic study of a plastic columnar discotic material 2, 3, 6, 7, 10, 11-hexabutyloxytriphenylene dispersed with gold nanoparticles under elevated pressure. J Therm Anal Calorim. 2017. DOI:10.1007/s10973-017-6128-4.
  • Clar E, Ironside CT. Hexabenzocoronene. Proc Chem Soc. 1958;150–151.
  • Halleux A, Martin RH, King GSD. Synthèses dans la série des dérivés polycycliques aromatiques hautement condensés. L’hexabenzo-1,12; 2,3; 4,5; 6,7; 8,9; 10,11-coronène, le tétrabenzo-4,5; 6,7; 11,12; 13,14-péropyrène et le tétrabenzo-1,2; 3,4; 8,9; 10,11-bisanthène. Helv Chim Acta. 1958;129:1177–1183. DOI:10.1002/hlca.19580410502
  • Hendel W, Khan ZH, Schmidt W. Hexa-peri-benzocoronene, a candidate for the origin of the diffuse interstellar visible absorption bands ? Tetrahedron. 1986;42:1127–1134.
  • Seyler H, Prushothaman B, Jones DJ, et al. Hexa-peri-hexabenzocoronene in organic electronics. Pure Appl Chem. 2014;84:1047–1067.
  • Hinkel F, Cho D, Pisula W, et al. Alternating donor–acceptor arrays from hexa-peri-hexabenzocoronene and benzothiadiazole: synthesis, optical properties, and self-assembly. Chem Eur J. 2015;21:86–90.
  • Alameddine B, Aebischer OF, Heinrich B, et al. Influence of linear and branched perfluoroalkylated side chains on the π–π stacking behaviour of hexa-peri-hexabenzocoronene and thermotropic properties. Supramol Chem. 2014;26:125–137.
  • Chen -H-H, Hung -H-H, Cheng Y-H, et al. The functionalized hexa-peri-hexabenzocoronenes by sonogashira coupling method to modify the columnar mesophase behaviour. Liq Cryst. 2015;42:1773–1778.
  • Chen L, Puniredd SR, Tan Y-Z, et al. Hexathienocoronenes: synthesis and self-organization. J Am Chem Soc. 2012;134:17869−17872.
  • Setia S, Pal SK. Unsymmetrically substituted room temperature discotic liquid crystals based on hexa–peri–hexabenzocoronene core. ChemistrySelect. 2016;1:880–885.
  • Wong WWH, Subbiah J, Puniredd SR, et al. Liquid crystalline hexa-peri-hexabenzocoronene-diketopyrrolopyrrole organic dyes for photovoltaic applications. J Mater Chem. 2012;22:21131–21137.
  • van de Craats AM, Warman JM, Fechtenkötter A, et al. Record charge carrier mobility in a room temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv Mater. 1999;11:1469–1472.
  • Pisula W, Menon A, Stepputat M, et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv Mater. 2005;17:684–689.
  • Tracz A, Jeszka JK, Watson MD, et al. Uniaxial alignment of the columnar super-structure of a hexa (alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J Am Chem Soc. 2003;125:1682–1683.
  • Xiao S, Myers M, Miao Q, et al. Molecular wires from contorted aromatic compounds. Angew Chem Int Ed. 2005;117:7556–7560.
  • Chen -H-H, Chang K-C, Chu C-M, et al. Discotic liquid crystals as novel corrosion-resistant coatings. Chem Commun. 2015;51:921–924.
  • Wang W, Liu X, Pu J. Electric-field response of discotic hexabenzocoronene (HBC) liquid crystals. Molecules. 2011;16:9101–9108.
  • Pisula W, Tomovic Z, Simpson C, et al. Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons. Chem Mater. 2005;17:4296–4303.
  • Tomovic Z, Watson MD, Mullen K. Superphenalene-based columnar liquid crystals. Angew Chem Int Ed. 2004;43:755–758.
  • Wasserfallen D, Kastler M, Pisula W, et al. Suppressing aggregation in a large polycyclic aromatic hydrocarbon. J Am Chem Soc. 2006;128:1334–1339.
  • Liu J, Tang J, Gooding JJJ. Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem. 2012;22:12435–12452.
  • Behabtu N, Lomeda JR, Green MJ, et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnology. 2010;5:406–411.
  • Kim JE, Han TH, Lee SH, et al. Graphene oxide liquid crystals. Angew Chem Int Ed. 2011;50:3043–3047.
  • Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano. 2011;5:2908–2915.
  • Aboutalebi SH, Gudarzi MM, Zheng QB, et al. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater. 2011;21:2978–2988.
  • Dan B, Behabtu N, Martinez A, et al. Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter. 2011;7:11154–11159.
  • Jalili R, Aboutalebi SH, Esrafilzadeh D, et al. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano. 2013;7:3981–3990.
  • Gudarzi MM, Moghadam MHM, Sharif F. Spontaneous exfoliation of graphite oxide in polar aprotic solvents as the route to produce graphene oxide – organic solvents liquid crystals. Carbon. 2013;64:403–415.
  • Zamora-Ledezma C, Puech N, Zakri C, et al. Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide. J Phys Chem Lett. 2012;3:2425–2430.
  • Shivanandareddy AB, Krishnamurthy S, Lakshminarayanan V, et al. Mutually ordered self-assembly of discotic liquid crystal–graphene nanocomposites. Chem Commun. 2014;50:710–712.
  • Kumar M, Kumar S. Stacking of ultra-thin reduced graphene oxide nanoparticles in supramolecular structures for optoelectronic applications. RSC Adv. 2015;5:14871–14878.
  • Shivanandareddy AB, Kumar M, Lakshminarayanan V, et al. Self-assembly of thiolated graphene oxide onto a gold surface and in the supramolecular order of discotic liquid crystals. RSC Adv. 2015;5:47692–47700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.