534
Views
30
CrossRef citations to date
0
Altmetric
Articles

Hockey-stick-shaped mesogens based on 1,3,4-thiadiazole: synthesis, mesomorphism, photophysical and DFT studies

, , &
Pages 2203-2221 | Received 25 Mar 2017, Accepted 12 May 2017, Published online: 28 May 2017

References

  • Niori T, Sekine T, Watanabe J, et al. Distinct ferroelectric smectic liquid crystals consisting of banana-shaped achiral molecules. J Mater Chem. 1996;6:1231–1233.
  • Link DR, Natale G, Shao R, et al. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science. 1997;278:1924–1927.
  • Walba DM, Korblova E, Shao R, et al. A ferroelectric liquid crystal conglomerate composed of racemic molecules. Science. 2000;288:2181–2184.
  • Pelzl G, Diele S, Weissflog W. Banana-shaped compounds. A new field of liquid crystals. Adv Mater. 1999;11:707–724.
  • Reddy RA, Tschierske C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J Mater Chem. 2006;16:907–961.
  • Alaasar M. Azobenzene-containing bent-core liquid crystals: an overview. Liq Cryst. 2016;43:2208–2243.
  • Takezoe H, Takanishi Y. Bent-core liquid crystals: their mysterious and attractive world. Jpn J Appl Phys. 2006;45:597–625.
  • Monika M, Prasad V, Nagaveni NG. Hockey stick-shaped azo compounds: effect of linkage groups and their direction of linking on mesomorphic properties. Liq Cryst. 2015;42:1490–1505.
  • Choi EJ, Park KM, Kim DY, et al. Pseudo-rodlike molecules with hockey-stick-shaped mesogen. Liq Cryst. 2016;43:1597–1605.
  • Aldred MP, Vlachos P, Dong D, et al. Heterocyclic reactive mesogens: synthesis, characterisation and mesomorphic behaviour. Liq Cryst. 2005;32:951–965.
  • Belmar J, Parra ML, Zúñiga C, et al. New liquid crystals containing the benzothiazol unit: amide and azo compounds. Liq Cryst. 1999;26:389–396.
  • Parra ML, Elgueta EY, Ulloa JA, et al. Columnar liquid crystals based on amino-1,3,4 thiadiazole derivatives. Liq Cryst. 2012;39:917–925.
  • Lehmann M, Seltmann J, Auer AA, et al. Synthesis and mesomorphic properties of new V-shaped shape-persistent nematogens containing a thiazole or a thiadiazole bending unit. J Mater Chem. 2009;19:1978–1988.
  • Bates MA. Bent core molecules and the biaxial nematic phase: a transverse dipole widens the optimal angle. Chem Phys Lett. 2007;437:189–192.
  • Han J, Chang XY, Zhu LR, et al. Synthesis and liquid crystal properties of a new class of calamitic mesogens based on substituted 2,5‐diaryl‐1,3,4‐thiadiazole derivatives with wide mesomorphic temperature ranges. Liq Cryst. 2008;35:1379–1394.
  • Parra ML, Saavedra CG, Hidalgo PI, et al. Novel chiral liquid crystals based on amides and azo compounds derived from 2‐amino‐1,3,4‐thiadiazoles: synthesis and mesomorphic properties. Liq Cryst. 2008;35:55–64.
  • Olate FA, Parra ML, Vergara JM, et al. Star-shaped molecules as functional materials based on 1,3,5-benzenetriesters with pendant 1,3,4-thiadiazole groups: liquid crystals, optical, solvatofluorochromic and electrochemical properties. Liq Cryst. 2016. DOI:10.1080/02678292.2016.1269369
  • Pathak SK, Gupta RK, Nath S, et al. Columnar self-assembly of star-shaped luminescent oxadiazole and thiadiazole derivatives. J Mater Chem C. 2015;3:2940–2952.
  • Seltmann J, Marini A, Mennucci B, et al. Non symmetric bent-core liquid crystals based on a 1,3,4-thiadiazole core unit and their nematic mesomorphism. Chem Mater. 2011;23:2630–2636.
  • Seltmann J, Lehmann M. Low-melting nematic V-shaped 1,3,4-thiadiazoles-phase engineering using small substituents and mixtures of flexible chains. Liq Cryst. 2011;38:407–422.
  • Han J, Wang Q, Wu J, et al. Synthesis and liquid crystalline property of H-shaped 1,3,4-thiadiazole dimmers. Liq Cryst. 2015;42:127–133.
  • Sato M, Notsu M, Nakashima S. The relationship between the structures of semi-rigid homo- and copolyesters based on 5,5′-diphenyl-2,2′-bis(1,3,4-thiadiazole)s and their liquid crystalline and optical properties. Liq Cryst. 2004;31:1195–1205.
  • Han J, Geng Q, Chen W, et al. Self-assembled liquid crystals formed by hydrogen bonding between non-mesogenic 1,3,4-oxadiazolebased pyridines and substituted benzoic acids. Supramol Chem. 2012;24:157–164.
  • Elgueta EY, Parra ML, Díaz EW, et al. Synthesis of novel symmetrical tetra- and hexacatenar di-amides containing 1,3,4-thiadiazole units and a study of their mesomorphic and luminescence properties. Liq Cryst. 2014;41:861–871.
  • Han J. 1,3,4-oxadiazole based liquid crystals. J Mater Chem C. 2013;1:7779–7797.
  • Lehmann M, Seltmann J. Low temperature enantiotropic nematic phases from V-shaped, shape-persistent molecules. Beilstein J Org Chem. 2009;5:73. DOI:10.3762/bjoc.5.73
  • Kaur S. Elastic properties of bent-core nematic liquid crystals: the role of the bend angle. Liq Cryst. 2016;43:2277–2284.
  • Cristiano R, Vieira AA, Ely F, et al. Synthesis and characterization of luminescent hockey stick‐shaped liquid crystalline compounds. Liq Cryst. 2006;33:381–390.
  • Parra ML, Elgueta EY, Jimenez V, et al. Novel amides and Schiff’s bases derived from 1,3,4-oxadiazole derivatives: synthesis and mesomorphic behavior. Liq Cryst. 2009;36:301–317.
  • Zhu LR, Yao F, Han J, et al. Synthesis, single crystal structure and liquid crystalline properties of bent-shaped 2,5-diaryl 1,3,4-oxadiazoles. Liq Cryst. 2009;36:209–213.
  • He CF, Richards GT, Kelly SM, et al. Heterocyclic polycatenar liquid crystals. Liq Cryst. 2007;34:1249–1267.
  • Tang J, Huang R, Gao H, et al. Columnar mesophases of luminescent polycatenar liquid crystals incorporating a 1,3-substituted benzene ring interconnecting two 1,3,4-oxadiazoles. RSC Adv. 2012;2:2842–2847.
  • Yang X, Dai H, He Q, et al. Hexagonal columnar mesophases of polycatenar para-phenylene connected bis-oxadiazole-based liquid crystals. Liq Cryst. 2013;40:1028–1034.
  • Roy B, De N, Majumdar KC. Advances in metal-free heterocycle-based columnar liquid crystals. Chem Eur J. 2012;18:14560–14588.
  • Kumar S, Gowda AN. The chemistry of bent-core molecules forming nematic liquid crystals. Liq Cryst Rev. 2015;3:99–145.
  • Francescangeli O, Stanic V, Torgova SI, et al. Ferroelectric response and induced biaxiality in the nematic phase of bent-core mesogens. Adv Funct Mater. 2009;19:2592–2600.
  • Francescangeli O, Samulski ET. Insights into the cybotactic nematic phase of bent-core molecules. Soft Matter. 2010;6:2413–2420.
  • Cristiano R, Ely F, Gallardo H. Light‐emitting bent‐shape liquid crystals. Liq Cryst. 2005;32:15–25.
  • Petrov VF, Tasaka T, Okamoto H, et al. A comparative x-ray diffraction study of two liquid crystalline 2,5-disubstituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives in their smectic phases. Mol Cryst Liq Cryst. 1999;348:73–78.
  • Kaur S, Tian L, Liu H, et al. The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle. J Mater Chem C. 2013;1:2416–2425.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revisionC.01. Wallingford(CT): Gaussian; 2010.
  • Yanai T, Tew D, Handy N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–57.
  • Curtiss LA, McGrath MP, Blaudeau JP, et al. Extension of Gaussian‐2 theory to molecules containing third‐row atoms Ga–Kr. J Chem Phys. 1995;103:6104–6113.
  • Naoum MM, Seliger H, Happ E. Effect of structural changes on mesophase stability of some model compounds based on the aryl benzoate group. Liq Cryst. 1997;23:247–253.
  • Tasaganva G, Kariduraganavar MY, Inamdar SR. Synthesis and nonlinear optical properties of polyurethanes containing nitro-substituted 1,3,4-oxadiazole chromophores. Synth Met. 2009;159:1812–1819.
  • Vieira A, Cristiano R, Ely F, et al. Synthesis and characterization of luminescent hockey stick‐shaped liquid crystalline compounds. Liq Cryst. 2006;33:381–390.
  • Vieira A, Cristiano R, Bortoluzzi AJ, et al. Luminescent 2,1,3-benzothiadiazole-based liquid crystalline compounds. J Mol Struct. 2008;875:364–371.
  • Srivastava RM, Neves Filho RAW, Schneider R, et al. Synthesis, optical properties and thermal behaviour of 1,3,4‐oxadiazole‐based twin dimers. Liq Cryst. 2008;35:737–742.
  • Matwijczuk A, Kaminski DM, Górecki A, et al. Spectroscopic studies of dual fluorescence in 2-((4-fluorophenyl)amino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole. J Phys Chem A. 2015;119:10791–10805.
  • He T, Wang Y, Tian X, et al. An organic dye with very large stokes-shift and broad tunability of fluorescence: potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor. Appl Phys Lett. 2016;108:011901.
  • Huang C, Peng X, Yi D, et al. Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: detection of solvent polarities, viscosities, and temperature. Sens Actuators B. 2013;182:521–529.
  • Balaguez RA, Ricordi VG, Duarte RC, et al. Bis-arylsulfenyl- and bis-arylselanyl-benzo-2,1,3-thiadiazoles: synthesis and photophysical characterization. RSC Adv. 2016;06:49613–49624.
  • Wang H, Chen F, Jia X, et al. Controllable molecular aggregation and fluorescence properties of 1,3,4-oxadiazole derivatives. J Mater Chem C. 2015;3:11681–11688.
  • Hayer A, De Halleux V, Kohler A, et al. Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. J Phys Chem B. 2006;110:7653–7659.
  • Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York (NY): Springer Academics; 2006.
  • Cushing SK, Li M, Huang F, et al. Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano. 2014;8:1002–1013.
  • Haidar S, Chaudhuri A, Chattopadhayay A. Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J Phys Chem B. 2011;115:5693–5706.
  • Demchenko AP. The red-edge effects: 30 years of exploration. Luminescence. 2002;17:19–42.
  • Józefowicz M, Heldt JR. Excitation-wavelength dependent fluorescence of ethyl 5-(4-aminophenyl)-3-amino-2,4-dicyanobenzoate. J Fluoresc. 2011;21:239–245.
  • Samanta A. Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J Phys Chem B. 2006;110:13704–13716.
  • Joshi A, Manasreh MO, Davis EA, et al. Temperature dependence of the band gap of colloidal CdSe∕ZnS core/shell nanocrystals embedded into an ultraviolet curable resin. Appl Phys Lett. 2006;89:111907.
  • Tang BZ, Zhan X, Yu G, et al. Efficient blue emission from siloles. J Mater Chem. 2001;11:2974–2978.
  • Zhao N, Li M, Yan Y, et al. A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. J Mater Chem C. 2013;1:4640–4646.
  • Zhu L, Wang R, Tan L, et al. Aggregation-induced emission and aggregation-promoted photo-oxidation in thiophene-substituted tetraphenylethylene derivative. Chem Asian J. 2016;11:2932–2937.
  • Li S, Shang Y, Zhao E, et al. Color-tunable and highly solid emissive AIE molecules: synthesis, photophysics, data storage and biological application. J Mater Chem C. 2015;3:3445–3451.
  • Bolln C, Tsuchida A, Frey H, et al. Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater. 1997;9:1475–1479.
  • Muhammad K, Nazir S, Hameed S, et al. Mesomorphic and fluorescence properties of methyl 4-(4-alkoxystyryl)benzoates. Liq Cryst. 2016;43:863–873.
  • Van Roie B, Leys J, Denolf K, et al. Weakly first-order character of the nematic-isotropic phase transition in liquid crystals. Phys Rev E. 2005;72:041702.
  • Imrie CT. Laterally substituted dimeric liquid crystals. Liq Cryst. 1989;6:391–396.
  • Chan TN, Lu Z, Yam WS, et al. Non-symmetric liquid crystal dimers containing an isoflavone moiety. Liq Cryst. 2012;39:393–402.
  • Al-Obaidy MMAR, Tomi IHR, Jaffer HJ. Non-symmetrically (1,2,4- and 1,3,4-)oxadiazole homologous: synthesis, characterisation and study the effect of different substituents on their mesophase behaviours. Liq Cryst. 2016. DOI:10.1080/02678292.2016.1264013
  • Mukherjee PK, Pleiner H, Brand HR. Simple Landau model of the smectic-A-isotropic phase transition. Eur Phys J E. 2001;4:293–297.
  • Rao NVS, Paul MK, Miyake I, et al. A novel smectic liquid crystalline phase exhibited by W-shaped molecules. J Mater Chem. 2003;13:2880–2884.
  • Ghara M, Pan S, Deb J, et al. A computational study on structure, stability and bonding in noble gas bound metal nitrates, sulfates and carbonates (metal = Cu, Ag, Au). J Chem Sci. 2016;10:1537–1548.
  • Ravikumar C, Joe IH, Jayakumar VS. Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: a vibrational approach. Chem Phys Lett. 2008;460:552–558.
  • Elango M, Parthasarathi R, Subramanian V, et al. Formaldehyde decomposition through profiles of global reactivity indices. J Mol Struct (Theochem). 2005;723:43–52.
  • Srinivasu K, Ghosh SK, Das R, et al. Theoretical investigation of hydrogen adsorption in all metal aromatic clusters. RSC Adv. 2012;2:2914–2922.
  • Chattaraj PK, Maiti B, Sarkar U. Philicity: A unified treatment of chemical reactivity and selectivity. J Phys Chem A. 2003;107:4973–4975.
  • Sarkar U, Padmanabhan J, Parthasarathi R, et al. Toxicity analysis of polychlorinated dibenzofurans through global and local electrophilicities. J Mol Struct (Theochem). 2006;758:119–125.
  • Sarkar U, Roy DR, Chattaraj PK, et al. A conceptual DFT approach towards analysing toxicity. J Chem Sci. 2005;117:599–612.
  • Chattaraj PK, Sarkar U. Ground and excited states reactivity dynamics of hydrogen and helium atoms. Int J Quant Chem. 2003;91:633–650.
  • Chattaraj PK, Sarkar U, Parthasarathi R, et al. DFT study of some aliphatic amines using generalized philicity concept. Int J Quant Chem. 2005;101:690–702.
  • Chattaraj PK, Maiti B, Sarkar U. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons. J Chem Sci. 2003;115:195–218.
  • Chattaraj PK, Sarkar U. Chemical reactivity dynamics in ground and excited electronic states. Comp Theor Chem. 2007;19:269–286.
  • Sarkar U, Khatua M, Chattaraj PK. A tug-of-war between electronic excitation and confinement in a dynamical context. Phys Chem Chem Phys. 2012;14:1716–1727.
  • Parr RG, Chattaraj PK. Principle of maximum hardness. J Am Chem Soc. 1991;113:1854–1855.
  • Chattaraj PK, Sarkar U, Roy DR, et al. Is electrophilicity a kinetic or a thermodynamic concept? Ind J Chem A. 2006;45A:1099–1112.
  • Chamorro E, Chattaraj PK, Fuentealba P. Variation of the electrophilicity index along the reaction path. J Phys Chem A. 2003;107:7068–7072.
  • Chattaraj PK, Sarkar U, Roy DR. Electronic structure principles and aromaticity. J Chem Educ. 2007;84:354–357.
  • Sasaki A, Uchida T, Miyagami S. Japan display. 1986. Tokyo. p. 62.
  • Schadt M. Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s. Displays. 1992;13:11–34.
  • Lee SH, Bhattacharyya SS, Jin HS, et al. Devices and materials for high-performance mobile liquid crystal displays. J Mater Chem. 2012;22:11893–11903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.