342
Views
11
CrossRef citations to date
0
Altmetric
INVITED ARTICLE

Is the alignment of nematics on a polymer slab always along the rubbing direction? A molecular dynamics study

, , ORCID Icon & ORCID Icon
Pages 1764-1774 | Received 24 Apr 2017, Published online: 23 Jun 2017

References

  • Bruce DW, Goodby JW, Sambles JR, et al. New directions in liquid crystal science. Phil Trans Roy Soc A. 2006;364:2567–2571.
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12:1387–1412.
  • Musevic I. Liquid-crystal micro-photonics. Liq Cryst Rev. 2016;4:1–34.
  • Woltman SJ, Jay GD, Crawford GP. Liquid crystals frontiers in biomedical applications. Singapore: World Scientific; 2007.
  • Wang Y, Hu QZ, Tian TT, et al. Simple and sensitive detection of pesticides using the liquid crystal droplet patterns platform. Sensors and Actuators B. 2017;238:676–682.
  • Zhou Y, Tsuji T, Chono S. Fundamental study on the application of liquid crystals to actuator devices. Appl Phys Lett. 2016;109:011902.
  • Goodby JW. The nanoscale engineering of nematic liquid crystals for displays. Liq Cryst. 2011;38:1363–1387.
  • Hoogboom J, Rasing T, Rowan AE, et al. LCD alignment layers. Controlling nematic domain properties. J Mater Chem. 2006;16:1305–1314.
  • Chigrinov VG, Kozenkov VM, Kwok HS. Photoalignment of liquid crystalline materials: physics and applications. Chichester: Wiley; 2008.
  • Chatelain P. Orientation of liquid crystal. Bull Soc Franc Miner. 1943;66:105.
  • Stohr J, Samant MG. Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model. J Electron Spectrosc Relat Phenom. 1999;98:189–207.
  • Geary JM, Goodby JW, Kmetz AR, et al. The mechanism of polymer alignment of liquid-crystal materials. J Appl Phys. 1987;62:4100–4108.
  • Brown KR, Bonnell DA, Sun ST. Atomic force microscopy of mechanically rubbed and optically buffed polyimide films. Liq Cryst. 1998;25:597–601.
  • Hayashi Y, Matsumoto K. X-ray photoelectron-spectroscopy analysis of buffed polyimide film. Nippon Kagaku Kaishi. 1994;5:490–492.
  • Hietpas GD, Sands JM, Allara DL. A vibrational spectroscopic study of molecular restructuring at surfaces of unidirectionally rubbed polyimide thin films. J Phys Chem B. 1998;102:10556–10567.
  • Ruetschi M, Grutter P, Funfschilling J, et al. Creation of liquid crystal waveguides with scanning force microscopy. Science. 1994;265:512–514.
  • Kim JH, Yoneya M, Yamamoto J, et al. Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization. Nanotechnology. 2002;13:133–137.
  • Toney MF, Russell TP, Logan JA, et al. Near-surface alignment of polymers in rubbed films. Nature. 1995;374:709–711.
  • Hahm SG, Ko YG, Rho Y, et al. Liquid crystal alignment in advanced flat-panel liquid crystal displays. Curr Opin Chem Eng. 2013;2:71–78.
  • Kikuchi H, Logan JA, Yoon DY. Study of local stress, morphology, and liquid-crystal alignment on buffed polyimide surfaces. J Appl Phys. 1996;79:6811–6817.
  • Ishihara S, Wakemoto H, Nakazima K, et al. The effect of rubbed polymer films on the liquid crystal alignment. Liq Cryst. 1989;4:669–675.
  • Bechtold IH, De Santo M, Bonvent JJ, et al. Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment. Liq Cryst. 2003;30:591–598.
  • Oh-E M, Hong SC, Shen YR. Orientations of phenyl sidegroups and liquid crystal molecules on a rubbed polystyrene surface. Appl Phys Lett. 2002;80:784–786.
  • Marcon V, Fritz D, van der Vegt NFA. Hierarchical modelling of polystyrene surfaces. Soft Matter. 2012;8:5585.
  • Lee SW, Chae B, Kim HC, et al. New clues to the factors governing the perpendicular alignment of liquid crystals on rubbed polystyrene film surfaces. Langmuir. 2003;19:8735–8743.
  • Luning J, Samant MG. Liquid crystal alignment on surface with orientational molecular order: a microscopic model derived from soft X-ray absorption spectroscopy. In: Rasing T, Musevic I, editors. Surfaces and interfaces of liquid crystals. Berlin: Springer Verlag; 2004. p. 139–173.
  • Sugimura A, Zhong-Can OY. Mechanism of nematic molecular alignment based on friction charges and surface topology by rubbing. Liq Cryst. 1993;14(2):319–326.
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–5197.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.
  • Martinelli NG, Savini M, Muccioli L, et al. Modeling polymer dielectric/pentacene interfaces: on the role of electrostatic energy disorder on charge carrier mobility. Adv Funct Mater. 2009;19:3254–3261.
  • Soldera A, Metatla N. Glass transition phenomena observed in stereoregular PMMAs using molecular modeling. Composites Part A. 2005;36:521–530.
  • Soldera A, Metatla N. Glass transition of polymers: atomistic simulation versus experiments. Phys Rev E. 2006;74:061803.
  • Soldera A. Atomistic simulations of vinyl polymers. Mol Simul. 2012;38(8–9):762–771.
  • Mark JE, editor. Physical properties of polymers handbook. New York, NY: Springer Science Business Media, LLC; 2007.
  • Santangelo PG, Roland CM. Molecular weight dependence of fragility in polystyrene. Macro-Molecules. 1998;31:4581–4585.
  • Ute K, Miyatake N, Hatada K. Glass transition temperature and melting temperature of uniform isotactic and syndiotactic poly(methyl methacrylate)s from 13mer to 50mer. Polymer. 1995;36:1415–1419.
  • Feller SE, Zhang Y, Pastor RW, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys. 1995;103:4613–4621.
  • Tiberio G, Muccioli L, Berardi R, et al. Towards in silico liquid crystals. Realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. Chem Phys Chem. 2009;10:125–136.
  • Weber ACJ, Burnell EE, Meerts WL, et al. Molecular dynamics and 1H NMR of n-hexane in liquid crystals. J Chem Phys. 2015;143:011103.
  • Roscioni OM, Muccioli L, Zannoni C. Predicting the conditions for homeotropic anchoring of liquid crystals at a soft surface. 4-n-pentyl-4t-cyanobiphenyl on alkylsilane self-assembled monolayers. ACS Appl Mater Interfaces. 2017;9:11993–12002.
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Fincham D, Heyes DM. Recent advances in molecular dynamics computer simulation. Adv Chem Phys. 1985;63:493–575.
  • Bonaccurso E, Graf K. Nanostructuring effect of plasma and solvent treatment on polystyrene. Langmuir. 2004;20:11183–11190.
  • Lin L, Cheng YT, Chiu CJ. Comparative study of hot embossed micro structures fabricated by laboratory and commercial environments. Microsyst Technol. 1998;4:113–116.
  • Hori H, Urakawa O, Adachi K. Dielectric relaxation in phase-segregated mixtures of polystyrene and liquid crystal 5CB. Macromolecules. 2004;37:1583–1590.
  • Konishi T, Yoshizaki T, Saito T, et al. Mean-square radius of gyration of oligo- and polystyrenes in dilute solutions. Macromolecules. 1990;23:290–297.
  • Abe F, Horita K, Einaga Y, et al. Excluded-volume effects on the mean-square radius of gyration and intrinsic viscosity of oligo- and poly(methyl methacrylates). Macromolecules. 1994;27:725–732.
  • Pizzirusso A, Berardi R, Muccioli L, et al. Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon. Chem Sci. 2012;3:573–579.
  • D’Avino G, Muccioli L, Zannoni C. From chiral islands to smectic layers: a computational journey across sexithiophene morphologies on c-60. Adv Funct Mater. 2015;25:1985–1995.
  • Roscioni OM, Muccioli L, Valle RGD, et al. Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness. Langmuir. 2013;29:8950–8958.
  • Dunmur DA, Fukuda A, Luckhurst GR, editors. Physical properties of liquid crystals, Vol. 1: nematics. Vol. 25 of EMIS datareview series. London: IEE; 2001.
  • Fox TG, Flory PJ. Second order transition temperatures and related properties of polystyrene. i. Influence of molecular weight. J Appl Phys. 1950;21:581–591.
  • Rouabah F, Dadache D, Haddaoui N. Thermophysical and mechanical properties of polystyrene: influence of free quenching. ISRN Polym Sci. 2012;2012:161364.
  • Keddie JL, Jones RA, Cory RA. Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett. 1994;27:59–64.
  • Tokita M, Sato O, Inagaki Y, et al. High-density poly(methyl methacrylate) brushes as anchoring surfaces of nematic liquid crystals. Jap J Appl Phys. 2011;50:071701.
  • Kinsinger MI, Buck ME, Meli MV, et al. Langmuir films of flexible polymers transferred to aqueous/liquid crystal interfaces induce uniform azimuthal alignment of the liquid crystal. J Colloid Interface Sci. 2010;341:124–135.
  • Xuan L, Wu RN, Peng ZH, et al. Order parameters of liquid crystal on the rubbing surfaces of alignment layers. Sci China Ser E-Technol Sci. 2002;45:654–660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.