145
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mesomorphic structure peculiarities of two mix-substituted phthalocyanines of the A3B type

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 625-633 | Received 22 Aug 2017, Accepted 18 Oct 2017, Published online: 06 Nov 2017

References

  • Martínez-Díaz MV, Ince M, Torres T. Phthalocyanines: colorful macroheterocyclic sensitizers for dye-sensitized solar cells. Monatsh Chem. 2011;142:699–707.
  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–1241.
  • Fukuda T, Homma S, Kobayashi N. Deformed phthalocyanines: synthesis and characterization of zinc phthalocyanines bearing phenyl substituents at the 1-, 4-, 8-, 11-, 15-, 18-, 22-, and/or 25-positions. Chem Eur J. 2005;11:5205–5216.
  • Claessens CG, Hahn U, Torres T. Phthalocyanines: from outstanding electronic properties to emerging applications. Chem Rec. 2008;8:75–97.
  • Robertson JM. An X-ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds. J Chem Soc. 1935;0:615–621.
  • Piechocki C, Simon J, Skoulios A, et al. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J Am Chem Soc. 1982;104:5245−5247.
  • Guillon D, Skoulios A, Piechocki C, et al. Discotic mesophases of the metal-free derivative of octa (dodecyloxymethyl) phthalocyanine. Mol Cryst Liq Cryst. 1983;100:275−284.
  • Donnio B, Guillon D, Bruce DW, et al. Comprehensive coordination chemistry II: from biology to nanotechnology. In: McCleverty JA, Meyer TJ, editors. Vol. 7: from the molecular to the nanoscale: synthesis, structure, and properties. Fujita M, Powell A, Creutz C, volume editors. Chapter 7.9, Metallomesogens. Oxford (UK): Elsevier; 2003. p. 357–627.
  • Cook MJ. Properties of some alkyl substituted phthalocyanines and related macrocycles. Chem Rec. 2002;2:225–236.
  • Ahmida M, Larocque R, Ahmed MS, et al. Halide effect in electron rich and deficient discotic phthalocyanines. J Mater Chem. 2010;20:1292–1303.
  • Eichhorn H. Mesomorphic phthalocyanines, tetraazaporphyrins, porphyrins and triphenylenes as charge-transporting materials. J Porphyrins Phthalocyanines. 2000;4:88–102.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • Yoshioka M, Ohta K, Yasutake M. Flying-seed-like liquid crystals. Part 4: a novel series of bulky substituents inducing mesomorphism instead of using long alkyl chains. RSC Adv. 2015;5:13828–13839.
  • Nakamura H, Sugiyama K, Ohta K, et al. Phthalocyanine-based discotic liquid crystals switching from a molten alkyl chain type to a flying-seed-like type. J Mater Chem C. 2017;5:7297–7306.
  • Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst. 2004;31:1037–1059.
  • Chico R, Domínguez C, Donnio B, et al. Isocyano-triphenylene complexes of gold, copper, silver, and platinum. Coordination features and mesomorphic behavior. Cryst Growth Des. 2016;16:6984–6991.
  • Zhao K-Q, Du J-Q, Long X-H, et al. Design of Janus triphenylene mesogens: facile synthesis, mesomorphism, photoluminescence, and semiconductivity. Dyes Pigm. 2017;143:252–260.
  • Usol’tseva NV, Smirnova AI, Kazak AV, et al. Optical, mesomorphic and photoelectric properties of the mix-substituted phthalocyanine ligands and their metal complexes of the A3B type. Liq Cryst and Their Appl. 2015;15:56–71.
  • Usol’tseva NV, Smirnova AI, Kazak AV, et al. Mix-substituted phthalocyanines of a “push–pull”-type and their metal complexes as prospective nanostructured materials for optoelectronics. Opto-Electronics Rev. 2017;25:127–136.
  • Alameddine B, Aebischer OF, Heinrich B, et al. Influence of linear and branched perfluoroalkylated side chains on the π–π stacking behavior of hexa-peri-hexabenzocoronene and thermotropic properties. Supramol Chem. 2014;26:125–137.
  • Donnio B, Heinrich B, Gulik-Krzywicki T, et al. The synthesis, mesomorphism, and characterization by X-ray diffraction and freeze-fracture electron microscopy of polycatenar liquid crystals of silver(I) showing columnar and cubic mesophases. Chem Mater. 1997;9:2951–2965.
  • Pucci D, Barberio G, Bellusci A, et al. Silver coordination complexes as room-temperature multifunctional materials. Chem Eur J. 2006;12:6738–6747.
  • Weber P, Guillon D, Skoulios A. Hexagonal columnar mesophases from phthalocyanine. Upright and tilted intracolumnar molecular stacking, herringbone and rotationally disordered columnar packing. Liq Cryst. 1991;9:369–382.
  • Myśliwiec D, Donnio B, Chmielewski PJ, et al. Peripherally fused porphyrins via the Scholl reaction: synthesis, self-assembly, and mesomorphism. J Am Chem Soc. 2012;134:4822–4833.
  • Kozhevnikov VN, Donnio B, Heinrich B, et al. Green-blue light-emitting platinum(II) complexes of cyclometallated 4,6-difluoro-1,3-dipyridylbenzenes showing mesophase organization. J Mater Chem C. 2015;3:10177–10187.
  • Serrano JL, Sierra T. Switchable columnar metallomesogens. Chem Eur J. 2000;6:759–766.
  • Takezoe H, Kishikawa K, Gorecka E. Switchable columnar phases. J Mater Chem. 2006;16:2412–2416.
  • Kato T, Yasuda T, Kamikawa Y, et al. Self-assembly of functional columnar liquid crystals. Chem Commun. 2009;7:729−739.
  • Matraszek J, Mieczkowski J, Pociecha D, et al. Molecular factors responsible for the formation of the axially polar columnar mesophase ColhPA. Chem Eur J. 2007;13:3377–3385.
  • Miyajima D, Araoka F, Takezoe H, et al. Ferroelectric columnar liquid crystal featuring confined polar groups within core–shell architecture. Science. 2012;336:209–213.
  • Takezoe H, Araoka F. Polar columnar liquid crystals. Liq Cryst. 2014;41:393–401.
  • Guilleme J, Aragó J, Ortí E, et al. A columnar liquid crystal with permanent polar order. J Mater Chem C. 2015;3:985–989.
  • Garland AD, Bryant GC, Chambrier I, et al. Liquid crystalline properties of unsymmetrically substituted phthalocyanines: structural features leading to nematic mesophase materials. J Porphyrins Phthalocyanines. 2014;18:944–949.
  • Krishna Bisoyi H, Kumar S. Discotic nematic liquid crystals: science and technology. Chem Soc Rev. 2010;39:264–285.
  • Kawata K. Orientation control and fixation of discotic liquid crystal. Chem Rec. 2002;2:59–80.
  • Concellón A, Marcos M, Romero P, et al. Not only columns: high hole mobility in a discotic nematic mesophase formed by metal-containing porphyrin-core dendrimers. Angew Chem Int Ed. 2017;56:1259–1263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.