639
Views
11
CrossRef citations to date
0
Altmetric
Article

Simulation-based design of thermally-driven actuators using liquid crystal elastomers

, , & ORCID Icon
Pages 1010-1022 | Received 12 Jun 2017, Accepted 08 Nov 2017, Published online: 20 Nov 2017

References

  • Wermter H, Finkelmann H. Liquid crystalline elastomers as artificial muscles. e-Polymers. 2001;013:1–13.
  • Tajbakhsh AR, Terentjev EM. Spontaneous thermal expansion of nematic elastomers. Eur Phys J E. 2001;6(2):181–188.
  • Mol GN, Harris KD, Bastiaansen CWM, et al. Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv Funct Mater. 2005;15(7):1155–1159.
  • Iamsaard S, Aßhoff SJ, Matt B, et al. Conversion of light into macroscopic helical motion. Nat Chem. 2014;6(3):229–235.
  • Liu D, Broer DJ. Self-assembled dynamic 3D fingerprints in liquid-crystal coatings towards controllable friction and adhesion. Angew Chem Int Ed. 2014;53:4542–4546.
  • Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, et al. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3:307–310.
  • Yamada M, Kondo M, Mamiya JI, et al. Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed. 2008;47(27):4986–4988.
  • Qing X, Qin L, Gu W, et al. Deformation of cross-linked liquid crystal polymers by light from ultraviolet to visible and infrared. Liq Cryst. 2016;43(13–15):2114–2135.
  • Lehmann W, Skupin H, Tolksdorf C, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature. 2001;410:447–450.
  • Yusuf Y, Huh J-H, Cladis PE, et al. Low-voltage-driven electromechanical effects of swollen liquid-crystal elastomers. Phys Rev E. 2005;71(6):1–8.
  • Spillmann CM, Ratna BR, Naciri J. Anisotropic actuation in electroclinic liquid crystal elastomers. Appl Phys Lett. 2007;90(2):021911.
  • Na YH, Aburaya Y, Orihara H, et al. Measurement of electrically induced shear strain in a chiral smectic liquid-crystal elastomer. Phys Rev E. 2011;83(6):1–5.
  • Boothby JM, Kim H, Ware TH. Shape changes in chemoresponsive liquid crystal elastomers. Sens Actuators B. 2017;240:511–518.
  • Doi H, Urayama K. Thermal bending coupled with volume change in liquid crystal gels. Soft Matter. 2017;13:4341–4348.
  • Sawa Y, Urayama K, Takigawa T, et al. Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment. Macromolecules. 2010;43(9):4362–4369.
  • Ware TH, McConney ME, Wie JJ, et al. Voxelated liquid crystal elastomers. Science. 2015;347(6225):982–984.
  • Liu D. Volume generation towards dynamic surface morphing in liquid crystal polymer networks. Liq Cryst. 2016;43(13–15):2136–2143.
  • Li C, Liu Y, Huang X, et al. Direct sun-driven artificial heliotropism for solar energy harvesting based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv Funct Mater. 2012;22(24):5166–5174.
  • Haberl JM, Sánchez-Ferrer A, Mihut AM, et al. Liquid-crystalline elastomer-nanoparticle hybrids with reversible switch of magnetic memory. Adv Mater. 2013;25(12):1787–1791.
  • Rešetič A, Milavec J, Zupančič B, et al. Polymer-dispersed liquid crystal elastomers. Nat Commun. 2016 Oct;7:13140.
  • De Gennes PG. Un muscle artificiel semi-rapide. C R Adac Sci II B. 1997;324(5):343–348.
  • Fleischmann E-K, Liang H-L, Kapernaum N, et al. One-piece micropumps from liquid crystalline core-shell particles. Nat Commun. 2012;3:1178.
  • Sánchez-Ferrer A, Fischl T, Stubenrauch M, et al. Liquid-crystalline elastomer microvalve for microfluidics. Adv Mater. 2011;23(39):4526–4530.
  • Sánchez-Ferrer A, Fischl T, Stubenrauch M, et al. Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems. Macromol Chem Phys. 2009;210(20):1671–1677.
  • Torras N, Zinoviev KE, Jaume Esteve ASF. Liquid-crystalline elastomer micropillar array for haptic actuation. J Mater Chem C. 2013;1(34):5183–5190.
  • Ware TH, Biggins JS, Shick AF, et al. Localized soft elasticity in liquid crystal elastomers. Nat Commun. 2016;7:10781.
  • Ge S-J, Zhao T-P, Wang M, et al. A homeotropic main-chain tolane-type liquid crystal elastomer film exhibiting high anisotropic thermal conductivity. Soft Matter. 2017;13:5463–5468.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14(11):1087–1098.
  • Shahsavan H, Salili SM, Jákli A, et al. Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Adv Mater. 2016;29(3):1–7.
  • Ichimura K, Seki T, Hosokit A, et al. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir. 1988;1216(1):1214–1216.
  • Fukuhara K, Nagano S, Hara M, et al. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat Commun. 2014;5:1–8.
  • Shteyner EA, Srivastava AK, Chigrinov VG, et al. Submicron-scale liquid crystal photo-alignment. Soft Matter. 2013;9(21):5160.
  • Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater. 2013;13(1):36–41.
  • Konya A, Gimenez-Pinto V, Selinger RLB. Modeling defects, shape evolution, and programmed auto-origami in liquid crystal elastomers. Front Mater. 2016;3(Jun.):24.
  • Lubensky TC, Mukhopadhyay R, Radzihovsky L, et al. Symmetries and elasticity of nematic gels. Phys Rev E. 2002 jul;66(1):011702.
  • DeSimone A, Teresi L. Elastic energies for nematic elastomers. Eur Phys J E. 2009;29(2):191–204.
  • He LH. Response of constrained glassy splay-bend and twist nematic sheets to light and heat. Eur Phys J E. 2013;36:8.
  • Oates WS, Wang H. A new approach to modeling liquid crystal elastomers using phase field methods. Modell Simul Mater Sci Eng. 2009;17(6):064004.
  • Fuchi K, Ware TH, Buskohl PR, et al. Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter. 2015;11(37):7288–7295.
  • An N, Li M, Zhou J. Instability of liquid crystal elastomers. Smart Mater Struct. 2016;25(1):015016.
  • DeSimone A, Gidoni P, Noselli G. Liquid crystal elastomer strips as soft crawlers. J Mech Phys Solids. 2015;84:254–272.
  • Chung H, Choi J, Yun J-H, et al. Light and thermal responses of liquid-crystal-network films: a finite element study. Phys Rev E. 2015;91(4):042503.
  • Warner M, Bladon P, Terentjev EM. “Soft elasticity” - deformation without resistance in liquid crystal elastomers. J Phys II. 1994;4(1):93–102.
  • Finkelmann H, Greve A, Warner M. The elastic anisotropy of nematic elastomers. Eur Phys J E. 2001;5(3):281–293.
  • De Gennes PG, Prost J. The physics of liquid crystals (international series of monographs on physics). Oxford, UK: Oxford University Press; 1995; (0.10):0–20.
  • Aharoni H, Sharon E, Kupferman R. Geometry of thin nematic elastomer sheets. Phys Rev Lett. 2014;113(25):257801.
  • Conti S, DeSimone A, Dolzmann G. Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys Rev E. 2002;66(6):1–8.
  • Lin Y, Jin L, Huo Y. Quasi-soft opto-mechanical behavior of photochromic liquid crystal elastomer: linearized stress-strain relations and finite element simulations. Int J Solids Struct. 2012;49(18):2668–2680.
  • Cajori F. A history of mathematical notations. Vol. 1. Mineola, NY: Courier Dover Publications; 1993.
  • Shahsavan H, Salili SM, Jákli A, et al. Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers. Adv Mater. 2015;27(43):6828–6833.
  • Alnæs MS, Blechta J, Hake J, et al. The FEniCS project version 1.5. Arch Numer Softw. 2015;3:100.
  • Barbero G, Evangelista LR. Adsorption phenomena and anchoring energy in nematic liquid crystals. Boca Raton, FL: CRC Press; 2005.
  • Timoshenko S. Analysis of bi-metal thermostats. J Opt Soc Am. 1925;11(3):233.
  • Itseez. Open Source Computer Vision Library; version 2.4.9.1;  2015. Available from: https://github.com/itseez/opencv
  • Warner M, Terentjev EM. Liquid crystal elastomers. International Series of Monographs on Physics, No. 120. Oxford: OUP; 2003.
  • Stein P, Aßfalg N, Finkelmann H, et al. Shear modulus of polydomain, mono-domain and non-mesomorphic side-chain elastomers: influence of the nematic order. Eur Phys J E. 2001;4(3):255–262.
  • Rogez D, Francius G, Finkelmann H, et al. Shear mechanical anisotropy of side chain liquid-crystal elastomers: influence of sample preparation. Eur Phys J E. 2006;20(4):369–378.
  • Squires AM, Tajbakhsh AR, Terentjev EM. Dynamic shear modulus of isotropic elastomers. Macromolecules. 2004;37(4):1652–1659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.