435
Views
5
CrossRef citations to date
0
Altmetric
Articles

Solvent-induced self-assembly of uniform lying helix alignment of the cholesteric liquid crystal phase for the flexoelectro-optic effect

ORCID Icon, , , , &
Pages 774-782 | Received 08 Dec 2017, Accepted 04 Jan 2018, Published online: 16 Jan 2018

References

  • Patel JS, Meyer RB. Flexoelectric electro-optics of a cholesteric liquid crystal. Phys Rev Lett. 1987;58(15):1538–1540.
  • Patel J, Lee SD. Fast linear electro-optic effect based on cholesteric liquid crystals. J Appl Phys. 1989;66(4):1879–1881.
  • Rudquist P, Carlsson T, Komitov L, et al. The flexoelectro-optic effect in cholesterics. Liq Cryst. 1997;22(4):445–449.
  • Coles HJ, Morris SM. Flexoelectro-optic liquid crystal displays. Handbook Visual Display Technology. Springer; 2012;1681–1694.
  • Inoue Y, Moritake H. Formation of a defect-free uniform lying helix in a thick cholesteric liquid crystal cell. Appl Phys Express. 2015;8(7):071701.
  • Salter P, Kischka C, Elston S, et al. The influence of chirality on the difference in flexoelectric coefficients investigated in uniform lying helix, Grandjean and twisted nematic structures. Liq Cryst. 2009;36(12):1355–1364.
  • Coles HJ, Clarke MJ, Morris SM, et al. Strong flexoelectric behavior in bimesogenic liquid crystals. J Appl Phys. 2006;99(3):034104.
  • Gardiner DJ, Morris SM, Hands PJ, et al. Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect. Appl Phys Lett. 2012;100(6):063501.
  • Outram B, Elston S. Spontaneous and stable uniform lying helix liquid-crystal alignment. J Appl Phys. 2013;113(4):043103.
  • Carbone G, Corbett D, Elston SJ, et al. Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography. Mol Cryst Liq Cryst. 2011;544(1):37–1025.
  • Carbone G, Salter P, Elston SJ, et al. Short pitch cholesteric electro-optical device based on periodic polymer structures. Appl Phys Lett. 2009;95(1):011102.
  • Caputo R, De Luca A, De Sio L, et al. Policryps: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. J Opt A: Pure Appl Opt. 2009;11(2):024017.
  • Tartan CC, Salter PS, Booth MJ, et al. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching. J Appl Phys. 2016;119(18):183106.
  • Bigioni TP, Lin XM, Nguyen TT, et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater. 2006;5(4):265–270.
  • Sau TK, Murphy CJ. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir. 2005;21(7):2923–2929.
  • Ohara PC, Leff DV, Heath JR, et al. Crystallization of opals from polydisperse nanoparticles. Phys Rev Lett. 1995;75(19):3466–3469.
  • Tang J, Ge G, Brus LE. Gas- liquid- solid phase transition model for two-dimensional nanocrystal self-assembly on graphite. J Phys Chem B. 2002;106(22):5653–5658.
  • Zhang H, Edwards EW, Wang D, et al. Directing the self-assembly of nanocrystals beyond colloidal crystallization. Phys Chem Chem Phys. 2006;8(28):3288–3299.
  • Maillard M, Motte L, Ngo A, et al. Rings and hexagons made of nanocrystals: a Marangoni effect. J Phys Chem B. 2000;104(50):11871–11877.
  • Rabani E, Reichman DR, Geissler PL, et al. Drying-mediated self-assembly of nanoparticles. Nature. 2003;426(6964):271–274.
  • Redl FX, Cho KS, Murray CB, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature. 2003;423(6943):968–971.
  • Nie Z, Petukhova A, Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol. 2010;5(1):15–25.
  • Shevchenko EV, Talapin DV, Kotov NA, et al. Structural diversity in binary nanoparticle superlattices. Nature. 2006;439(7072):55–59.
  • Min Y, Akbulut M, Kristiansen K, et al. The role of interparticle and external forces in nanoparticle assembly. Nat Mater. 2008;7(7):527–538.
  • Dziomkina NV, Vancso GJ. Colloidal crystal assembly on topologically patterned templates. Soft Matter. 2005;1(4):265–279.
  • Lin X, Jaeger H, Sorensen C, et al. Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B. 2001;105(17):3353–3357.
  • Zhang Z, Lin M. High-yield preparation of vertically aligned gold nanorod arrays via a controlled evaporation-induced self-assembly method. J Mater Chem C. 2014;2(23):4545–4551.
  • Goubet N, Richardi J, Albouy PA, et al. How to predict the growth mechanism of supracrystals from gold nanocrystals. J Phys Chem Lett. 2011;2(5):417–422.
  • Sigman MB, Saunders AE, Korgel BA. Metal nanocrystal superlattice nucleation and growth. Langmuir. 2004;20(3):978–983.
  • Guo W, Wang M, Xia W, et al. Evaporation-induced self-assembly of capillary cylindrical colloidal crystal in a face-centered cubic structure with controllable thickness. J Mater Res. 2012;27(13):1663–1671.
  • Strangi G, Barna V, Caputo R, et al. Color-tunable organic microcavity laser array using distributed feedback. Phys Rev Lett. 2005;94(6):063903.
  • Chen J, Morris SM, Wilkinson TD, et al. High speed liquid crystal over silicon display based on the flexoelectro-optic effect. Opt Express. 2009;17(9):7130–7137.
  • Sengupta A, Herminghaus S, Bahr C. Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liq Cryst Review. 2014;2(2):73–110.
  • Tatarkova S, Burnham D, Kirby A, et al. Colloidal interactions and transport in nematic liquid crystals. Phys Rev Lett. 2007;98(15):157801.
  • Carlton RJ, Ma CD, Gupta JK, et al. Influence of specific anions on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. Langmuir. 2012;28(35):12796–12805.
  • Corbett DR, Elston SJ. Modeling the helical flexoelectro-optic effect. Phys Rev E. 2011;84(4):041706.
  • De Gennes P. Calcul de la distorsion d’une structure cholesterique par un champ magnetique. Solid State Commun. 1968;6(3):163–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.