636
Views
6
CrossRef citations to date
0
Altmetric
Articles

Toward well-organised ionic discotic liquid crystals via versatile supramolecular approach

, , , & ORCID Icon
Pages 1287-1293 | Received 25 Dec 2017, Accepted 21 Jan 2018, Published online: 30 Jan 2018

References

  • Goossens K, Lava K, Bielawski CW, et al. Ionic liquid crystals: versatile materials. Chem Rev. 2016;116:4643–4807.
  • Binnemans K. Ionic liquid crystals. Chem Rev. 2005;105:4148–4204.
  • Faul CFJ. Ionic self-assembly for functional hierarchical nanostructured materials. Acc Chem Res. 2014;47:3428–3438.
  • Pal SK, Kumar S. Ionic discotic liquid crystals: recent advances and applications. In: Tiwari A, Turner APF, editors. Biosensors nanotechnology. Hoboken, NJ: Wiley-VCH; 2014. p. 267–314.
  • Chen S, Eichhorn SH. Ionic discotic liquid crystals. Isr J Chem. 2012;52:830–843.
  • Haketa Y, Maeda H. Dimension-controlled ion-pairing assemblies based on π-electronic charged species. Chem Commun. 2017;53:2894–2909.
  • Kato T, Yoshio M, Ichikawa T, et al. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater. 2017;2:17001.
  • Goodby JW, Collings PJ, Kato T, et al. Handbook of liquid crystals. 2nd ed. Vol. 6, Nanostructured and amphiphilic liquid crystals. Weinheim: Wiley-VCH; 2014. p. 231–280.
  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Materials. 2011;4:206–259.
  • Uchida J, Kato T. Liquid-crystalline fork-like dendrons. Liq Cryst. 2017;44:1816–1829.
  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–1241.
  • Kumar S. Chemistry of discotic liquid crystals: from monomers to polymers. Boca Raton, FL: CRC; 2010. (Percec V, editor. The Liquid Crystals Book Series).
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chem Rev. 2007;107:718–747.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887.
  • Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst. 2004;31:1037–1059.
  • Pal SK, Setia S, Avinash BS, et al. Triphenylene-based discotic liquid crystals: recent advances. Liq Cryst. 2013;40:1769–1816.
  • Pană A, Iliş M, Staicu T, et al. Columnar bis(pyridinium) ionic liquid crystals derived from 4-hydroxypyridine: synthesis, mesomorphism and emission properties. Liq Cryst. 2016;43:381–392.
  • Gupta RK, Manjuladevi V, Karthik C, et al. Thin films of discotic liquid crystals and their applications. Liq Cryst. 2016;43:2079–2091.
  • Said SM, Mahmood MS, Daud MN, et al. Structure-electronics relations of discotic liquid crystals from a molecular modelling perspective. Liq Cryst. 2016;43:2092–2113.
  • Alam MA, Motoyanagi J, Yamamoto Y, et al. “Bicontinuous cubic” liquid crystalline materials from discotic molecules: a special effect of paraffinic side chains with ionic liquid pendants. J Am Chem Soc. 2009;131:17722–17723.
  • Lee JJ, Yamaguchi A, Alam MA, et al. Discotic ionic liquid crystals of triphenylene as dispersants for orienting single-walled carbon nanotubes. Angew Chem Int Ed. 2012;51:8490–8494.
  • Maeda H, Naritani K, Honsho Y, et al. Anion modules: building blocks of supramolecular assemblies by combination with π-conjugated anion receptors. J Am Chem Soc. 2011;133:8896–8899.
  • Dong B, Sakurai T, Honsho Y, et al. Cation modules as building blocks forming supramolecular assemblies with planar receptor-anion complexes. J Am Chem Soc. 2013;135:1284–1287.
  • Zakrevskyy Y, Faul CFJ, Guan Y, et al. Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases. Adv Funct Mater. 2004;14:835–841.
  • Wu D, Pisula W, Enkelmann V, et al. Controllable columnar organization of positively charged polycyclic aromatic hydrocarbons by choice of counterions. J Am Chem Soc. 2009;131:9620–9621.
  • Kadam J, Faul CFJ, Scherf U. Induced liquid crystallinity in switchable side-chain discotic molecules. Chem Mater. 2004;16:3867–3871.
  • Camerel F, Ulrich G, Barberá J, et al. Ionic self-assembly of ammonium-based amphiphiles and negatively charged bodipy and porphyrin luminophores. Chem Eur J. 2007;13:2189–2200.
  • Wu D, Zhi L, Bodwell GL, et al. Self-assembly of positively charged discotic PAHs: from nanofibers to nanotubes. Angew Chem Int Ed. 2007;46:5417–5420.
  • Luo Y, Marets N, Kato T. Selective lithium ion recognition in self-assembled columnar liquid crystals based on a lithium receptor. Chem Sci. 2018;9:608–616.
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2006;45:38–68.
  • Yang L, Tan X, Wang Z, et al. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev. 2015;115:7196–7239.
  • Wei P, Yan X, Huang F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem Soc Rev. 2015;44:815–832.
  • Li J, Yim D, Jang W-D, et al. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem Soc Rev. 2017;46:2437–2458.
  • Engelkamp H, Middelbeek S, Nolte RJM. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science. 1999;284:785–788.
  • van Nostrum CF, Picken SJ, Schouten A-J, et al. Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted phthalocyanines: toward molecular wires and molecular ionoelectronics. J Am Chem Soc. 1995;117:9957–9965.
  • Schultz A, Laschat S, Saipa A, et al. Columnar liquid crystals with a central crown ether unit. Adv Funct Mater. 2004;14:163–168.
  • Kaller M, Deck C, Meister A, et al. Counterion effects on the columnar mesophases of triphenylene-substituted [18]crown-6 ethers: is flatter better? Chem Eur J. 2010;16:6326–6337.
  • Kaller M, Tussetschläger S, Fischer P, et al. Columnar mesophases controlled by counterions in potassium complexes of dibenzo[18]crown-6 derivatives. Chem Eur J. 2009;15:9530–9542.
  • Laschat S, Baro A, Wöhrle T, et al. Playing with nanosegregation in discotic crown ethers: from molecular design to OFETs, nanofibers and luminescent materials. Liq Cryst Today. 2016;25:48–60.
  • Ma Y, Marszalek T, Yuan Z, et al. Crown ether decorated dibenzocoronene tetracarboxdiimide chromophore: synthesis, sensing, and self-organization. Chem Asian J. 2015;10:139–143.
  • Bader K, Neidhardt MM, Wöhrle T, et al. Amino acid/crown ether hybrid materials: how charge affects liquid crystalline self-assembly. Soft Matter. 2017;13:8379–8391.
  • Tang H, Guo H, Yang F, et al. Synthesis and mesomorphic properties of calix[4]resorcinarene-triphenylene oligomers. Liq Cryst. 2017;44:1566–1574.
  • Shcherbina MA, Bakirov AV, Beginn U, et al. Heuristics for precise supramolecular control of soft matter structure and properties – 2,3,4-tris(dodecyloxy)benzenesulfonates with alkaline and organic cations. Chem Commun. 2017;53:10070–10073.
  • Shcherbina MA, Bakirov AV, Yan L, et al. Self-assembling of tapered benzenesulfonate-based dendrons with bulky aromatic focal groups. Mendeleev Commun. 2015;25:142–144.
  • Shcherbina MA, Bakirov AV, Yakunin AN, et al. The effect of the shape of the mesogenic group on the structure and phase behavior of 2,3,4-tris(dodecyloxy)benzenesulfonates with alkaline cations. Soft Matter. 2014;10:1746–1757.
  • Asaftei S, Ciobanu M, Lepadatu AM, et al. Thermotropic ionic liquid crystals by molecular assembly and ion pairing of 4,4ʹ-bipyridinium derivatives and tris(dodecyloxy)benzenesulfonates in a non-polar solvent. J Mater Chem. 2012;22:14426–14437.
  • Beginn U, Yan L, Chvalun SN, et al. Thermotropic columnar mesophases of wedge-shaped benzenesulfonic acid mesogens. Liq Cryst. 2008;35:1073–1093.
  • Butschies M, Frey W, Laschat S. Designer ionic liquid crystals based on congruently shaped guanidinium sulfonates. Chem Eur J. 2012;18:3014–3022.
  • Mu B, Hao XT, Chen J, et al. Discotic columnar liquid-crystalline polymer semiconducting materials with high charge-carrier mobility via rational macromolecular engineering. Polym Chem. 2017;8:3286–3293.
  • Mu B, Wu B, Chen DZ. Macromolecular engineering on triphenylene based discotic side-chain liquid crystalline polymers. Acta Polym Sin. 2017;10:1574–1590.
  • Zamir S, Poupko R, Luz Z, et al. Molecular ordering and dynamics in the columnar mesophase of a new dimeric discotic liquid crystal as studied by X-ray diffraction and deuterium NMR. J Am Chem Soc. 1994;116:1973–1980.
  • Osawa T, Kajitani T, Hashizume D, et al. Wide-range 2D lattice correlation unveiled for columnarly assembled triphenylene hexacarboxylic esters. Angew Chem Int Ed. 2012;51:7990–7993.
  • Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Ed. 2013;52:8828–8878.
  • Zeng X, Kieffer R, Glettner B, et al. Complex multicolor tilings and critical phenomena in tetraphilic liquid crystals. Science. 2011;331:1302–1306.
  • Prehm M, Diele S, Das MK, et al. Correlated layer structures: a novel type of liquid crystalline phase with 2D-lattice. J Am Chem Soc. 2003;125:614–615.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.