1,215
Views
14
CrossRef citations to date
0
Altmetric
Articles

Condensation of free volume in structures of nematic and hexatic liquid crystals

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 114-123 | Received 22 Mar 2018, Accepted 09 May 2018, Published online: 23 May 2018

References

  • Goodby JW. The nanoscale engineering of nematic liquid crystals for displays. Liq Cryst. 2011;38(11–12):1363–1387. PubMed PMID: WOS:000297464800004.
  • Clark NA, Lagerwall ST. Submicrosecond bistable electro-optic switching in liquid-crystals. Appl Phys Lett. 1980;36(11):899–901. PubMed PMID: WOS:A1980JV22600009.
  • Dong CC, Styring P, Goodby JW, et al. The synthesis and electro-optic properties of liquid crystalline 2-(2,3-difluorobiphenyl-4 ‘-yl)-1,3-dioxanes. J Mater Chem. 1999;9(8):1669–1677. PubMed PMID: WOS:000081920600005.
  • Hird M, Goodby JW, Hindmarsh P, et al. The design, synthesis and structure-property relationships of ferroelectric and antiferroelectric liquid crystal materials. Ferroelectrics. 2002;276:219–237. PubMed PMID: WOS:000178789500020.
  • Kusumoto T, Hiyama T, Takehara S. Design and synthesis of chiral dopants having a chiral ring structure for ferroelectric liquid-crystals. Nippon Kagaku Kaishi. 1992;(12):1401–1411. PubMed PMID: WOS:A1992KD11300001.
  • Walba DM, Sierra T, Rego JA, et al. Controlling the structure of ferroelectric liquid-crystal thin-films by design - the molecules to materials connection. Abstr Pap Am Chem S. 1991;202:202–Biot. PubMed PMID: WOS:A1991HG08000709.
  • Goodby JW, Leslie TM. Ferroelectric liquid-crystals - structure and design. Mol Cryst Liq Cryst. 1984;110(1–4):175–203. PubMed PMID: WOS:A1984TQ29400014.
  • Hird M. Ferroelectricity in liquid crystals-materials, properties and applications. Liq Cryst. 2011;38(11–12):1467–1493. PubMed PMID: WOS:000297464800010.
  • Mandle RJ, Davis EJ, Sarju JP, et al. Control of free volume through size exclusion in the formation of smectic C phases for display applications. J Mater Chem C. 2015;3(17):4333–4344. PubMed PMID: WOS:000353769300017.
  • Mandle RJ, Davis EJ, Voll CCA, et al. Self-organisation through size-exclusion in soft materials. J Mater Chem C. 2015;3(10):2380–2388. PubMed PMID: WOS:000350693200027.
  • Mulligan KM, Bogner A, Song QX, et al. Design of liquid crystals with ‘de Vries-like’ properties: the effect of carbosilane nanosegregation in 5-phenyl-1,3,4-thiadiazole mesogens. J Mater Chem C. 2014;2(39):8270–8276. PubMed PMID: WOS:000342881600009.
  • Schubert CPJ, Bogner A, Porada JH, et al. Design of liquid crystals with ‘de Vries-like’ properties: carbosilane-terminated 5-phenylpyrimidine mesogens suitable for chevron-free FLC formulations. J Mater Chem C. 2014;2(23):4581–4589. PubMed PMID: WOS:000336834400009.
  • Roberts JC, Kapernaum N, Giesselmann F, et al. Design of liquid crystals with “de Vries-like” properties: organosiloxane mesogen with a 5-phenylpyrimidine core. J Am Chem Soc. 2008;130(42):13842–13843. PubMed PMID: WOS:000260047700016.
  • Thompson M, Carkner C, Bailey A, et al. Tuning the mesogenic properties of 5-alkoxy-2-(4-alkoxyphenyl)pyrimidine liquid crystals: the effect of a phenoxy end-group in two sterically equivalent series. Liq Cryst. 2014;41(9):1246–1260. PubMed PMID: WOS:000338705100004.
  • Rupar I, Mulligan KM, Roberts JC, et al. Elucidating the smectic A-promoting effect of halogen end-groups in calamitic liquid crystals. J Mater Chem C. 2013;1(23):3729–3735. PubMed PMID: WOS:000319360700015.
  • Davis EJ, Mandle RJ, Russell BK, et al. Liquid-crystalline structure-property relationships in halogen-terminated derivatives of cyanobiphenyl. Liq Cryst. 2014;41(11):1635–1646. PubMed PMID: WOS:000344456600017.
  • Wulf A. Steric model for the smectic-$C$ phase. Phys Rev A. 1975;11(1):365–375.
  • McMillan WL. Simple molecular theory of the smectic $C$ phase. Phys Rev A. 1973;8(4):1921–1929.
  • Madhusudana NV. Dipolar origin of tilting of rod-like molecules in the smectic C phase. Liq Cryst. 2015;42(5–6):840–863. PubMed PMID: WOS:000358163400022.
  • Goodby JW, Pindak R. Characterization of the hexatic-B and crystal B-phases by optical microscopy. Mol Cryst Liq Cryst. 1981;75(1–4):233–247. PubMed PMID: WOS:A1981MP91000020.
  • Pindak R, Moncton DE, Davey SC, et al. X-ray-observation of a stacked hexatic liquid-crystal B-phase. Phys Rev Lett. 1981;46(17):1135–1138. PubMed PMID: WOS:A1981LL72100007.
  • Moncton DE, Pindak R, Davey SC, et al. X-ray observations of a stacked hexatic liquid-crystal B-phase. B Am Phys Soc. 1981;26(3):274–275. PubMed PMID: WOS:A1981LE30500485.
  • Nelson DR, Halperin BI. Dislocation-mediated melting in two dimensions. Phys Rev B. 1979;19(5):2457–2484.
  • Kosterlitz JM. Commentary on ‘Ordering, metastability and phase transitions in two-dimensional systems’ J M Kosterlitz and D J Thouless (1973 J-Phys. C: solid State Phys. 6 1181-203)-the early basis of the successful Kosterlitz-Thouless theory. J Phys-Condens Mat. 2016;28(48). PubMed PMID: WOS:000385448700001. DOI:10.1088/0953-8984/28/48/481001
  • Kosterlitz JM, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C: Solid State Phys. 1973;6(7):1181.
  • Huang CC, Viner JM, Pindak R, et al. Heat-capacity study of the transition from a stacked-hexatic-B phase to a smectic-a phase. Phys Rev Lett. 1981;46(19):1289–1292. PubMed PMID: WOS:A1981LN61200011.
  • Noh DY, Brock JD, Litster JD, et al. Fluid, hexatic, and crystal phases in terephthal-bis-(4\textit{n})-alkylanilines. Phys Rev B. 1989;40(7):4920–4927.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02, 2009. Wallingford(CT), Gaussian, Inc.,
  • Vaupotic N, Szydlowska J, Salamonczyk M, et al. Structure studies of the nematic phase formed by bent-core molecules. Phys Rev E. 2009;80(3). PubMed PMID: WOS:000270383400010. DOI:10.1103/PhysRevE.80.030701
  • Vries AD. X-ray photographic studies of liquid-crystals .4. isotropic, nematic, and smectic a phases of some 4-alkoxybenzal-4ʹ-ethylanilines. Mol Cryst Liq Cryst. 1973;20(2):119–131. PubMed PMID: WOS:A1973P271900003.
  • Azaroff LV. X-ray-scattering by cybotactic nematic mesophases. Proc Natl Acad Sci United States America-Physical Sci. 1980;77(3):1252–1254. PubMed PMID: WOS:A1980JL81000007.
  • Cowling SJ, Hall AW, Goodby JW, et al. Examination of the interlayer strength of smectic liquid crystals through the study of partially fluorinated and branched fluorinated end-groups. J Mater Chem. 2006;16(22):2181–2191. PubMed PMID: WOS:000237951700009.
  • Mandle RJ, Cowling SJ, Sage I, et al. Relationship between molecular association and re-entrant phenomena in polar calamitic liquid crystals. J Phys Chem B. 2015;119(7):3273–3280. PubMed PMID: WOS:000349942300049.
  • Mandle RJ, Cowling SJ, Goodby JW. Evaluation of 4-alkoxy-4 ‘-nitrobiphenyl liquid crystals for use in next generation scattering LCDs. Rsc Adv. 2017;7(64):40480–40485. PubMed PMID: WOS:000408043100051.
  • Petrov AG, Derzhanski A. Generalized asymmetry of thermotropic and lyotropic mesogens. Mol CrystLiq Cryst. 1987;151:303–333. PubMed PMID: WOS:A1987L824000025.
  • Cardinaels T, Ramaekers J, Nockemann P, et al. Rigid tetracatenar liquid crystals derived from 1,10-phenanthroline. Soft Matter. 2008;4(11):2172–2185. PubMed PMID: WOS:000261733100009.
  • Ibnelhaj M, Skoulios A, Guillon D, et al. Structural characterization of linear dimeric and cyclic tetrameric liquid-crystalline siloxane derivatives. Liq Cryst. 1995;19(3):373–378. PubMed PMID: WOS:A1995RV31100013.
  • Corsellis E, Guillon D, Kloess P, et al. Structural characterization of mono- and di-mesogenic organosiloxanes: the impact of siloxane content on biphenyl benzoate systems. Liq Cryst. 1997;23(2):235–239. PubMed PMID: WOS:A1997XN08800009.
  • Tschierske C. Non-conventional liquid crystals - the importance of micro-segregation for self-organisation. J Mater Chem. 1998;8(7):1485–1508. PubMed PMID: WOS:000074812100001.
  • Hopken J, Moller M. On the morphology of (perfluoroalkyl)alkanes. Macromolecules. 1992;25(9):2482–2489. PubMed PMID: WOS:A1992HR58600029.
  • Viney C, Russell TP, Depero LE, et al. Transitions to liquid-crystalline phases in a semifluorinated alkane. Mol Cryst Liq Cryst. 1989;168:63–82. PubMed PMID: WOS:A1989U118300006.
  • Nguyen HT, Sigaud G, Achard MF, et al. Rod-like mesogens with antipathetic fluorocarbon and hydrocarbon tails. Liq Cryst. 1991;10(3):389–396. PubMed PMID: WOS:A1991GB00800009.
  • Bilgin-Eran B, Yorur C, Tschierske C, et al. Liquid crystals based on semiperfluorinated imines and salicylaldimato metal complexes. A comparative study of alkyl, alkoxy and polyether substituents. J Mater Chem. 2007;17(22):2319–2328. PubMed PMID: WOS:000247349400017.
  • Gainar A, Tzeng MC, Heinrich B, et al. Incompatibility-driven self-organization in polycatenar liquid crystals bearing both hydrocarbon and fluorocarbon chains. J Phys Chem B. 2017;121(37):8817–8828. PubMed PMID: WOS:000411772100020.
  • Imai M, Kawaguchi A, Saeki A, et al. Fluctuations of lamellar structure prior to a lamellar -> gyroid transition in a nonionic surfactant system. Phys Rev E. 2000;62(5):6865–6874. PubMed PMID: WOS:000165341900023.
  • Yamaguchi A, Uehara N, Yamamoto J, et al. Lamellar to lamellar phase transition driven by conformation change of an amphiphilic liquid crystal oligomer. Chem Mater. 2007;19(26):6445–6450. PubMed PMID: WOS:000251733600016.
  • Cladis PE, Guillon D, Bouchet FR, et al. Reentrant nematic transitions in cyano-octyloxybiphenyl (8OCB). Phys Rev A. 1981;23(5):2594–2601.
  • Pietrasik U, Szydlowska J, Krowczynski A, et al. Re-entrant isotropic phase between lamellar and columnar mesophases. J Am Chem Soc. 2002;124(30):8884–8890. PubMed PMID: WOS:000177074400037.
  • Weissflog W, Letko I, Pelzl G, et al. Re-entrant isotropic behaviour of a pure double-swallow-tailed compound. Liq Cryst. 1995;18(6):867–870.
  • Huang TC, Toraya H, Blanton TN, et al. X-ray-powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J Appl Crystallogr. 1993;26:180–184. PubMed PMID: WOS:A1993KY85100005.
  • Mandle RJ, Cowling SJ, Goodby JW. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem-Eur J. 2017;23(58):14554–14562. PubMed PMID: WOS:000413167100023.
  • Mandle RJ, Cowling SJ, Goodby JW. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys Chem Chem Phys. 2017;19(18):11429–11435. PubMed PMID: WOS:000401022300045.
  • Sasaki T, Takanishi Y, Yamamotob J, et al. A frustrated phase driven by competition among layer structures. Soft Matter. 2017;13(30):5194–5203. PubMed PMID: WOS:000407069700011.
  • Kishikawa K, Yamamoto Y, Watanabe G, et al. Shape-assisted self-organization in highly disordered liquid crystal phases. Angew Chem Int Edit. 2017;56(16):4598–4602. PubMed PMID: WOS:000398154000036.
  • Resnick DJ, Garland JC, Boyd JT, et al. Kosterlitz-Thouless transition in proximity-coupled superconducting arrays. Phys Rev Lett. 1981;47(21):1542–1545. PubMed PMID: WOS:A1981MQ50100015.
  • McBryan OA, Spencer T. On the decay of correlations inSO(n)-symmetric ferromagnets. Commun Math Phys. 1977;53(3):299–302.