401
Views
14
CrossRef citations to date
0
Altmetric
Invited Article

Temperature-dependent UV absorption of biphenyl based on intra-molecular rotation investigated within a combined experimental and TD-DFT approach

, , &
Pages 2048-2053 | Received 17 May 2018, Published online: 25 Jul 2018

References

  • Kirsch P, Bremer M. Nematic liquid crystals for active matrix displays: molecular design and synthesis. Angew Chem Int Ed. 2000;39:4216–4235.
  • D’Alessandro A, Asquini R, Pasini P, et al. Liquid crystal channel waveguides: a computer simulation of the application of transversal external fields. Molec. Cryst. Liq. Cryst. 2017;649:79–85.
  • DąBrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3:443–482.
  • Wani OM, Zeng H, Priimagi A. A light-driven artificial flytrap. Nat Commun. 2017;8:15546.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • Hanna J. Towards a new horizon of optoelectronic devices with liquid crystals. Opto-Electron Rev. 2005;13:259–267.
  • Lamarra M, Muccioli L, Orlandi S, et al. Temperature dependence of charge mobility in model discotic liquid crystals. Phys Chem Chem Phys. 2012;14:5368–5375.
  • Wang L, Prezhdo OV, Beljonne D. Mixed quantum-classical dynamics for charge transport in organics. Phys Chem Chem Phys. 2015;17:12395–12406.
  • Olivier Y, Muccioli L, Lemaur V, et al. Theoretical characterization of the structural and hole transport dynamics in liquid-crystalline phthalocyanine stacks. J Phys Chem B. 2009;113:14102–14111.
  • Imrie CT, Lu Z, Picken SJ, et al. Oligomeric rod–disc nematic liquid crystals. Chem Commun. 2007;12:1245–1247.
  • Olivier Y, Muccioli L, Zannoni C. Quinquephenyl: the simplest rigid rod-like nematic liquid crystal or is it? atomistic simulation. ChemPhysChem. 2014;15:1345–1355.
  • Berardi R, Zannoni C. Low-temperature biaxial nematics of mixed rod and disc mesogens A molecular dynamics simulation. Soft Matter. 2012;8:2017–2025.
  • Berardi R, Orlandi S, Zannoni C. Monte carlo simulations of rod-like gay-berne mesogens with transverse dipoles. Int J Mod Phys C. 1999;10:477–484.
  • Lemieux RP. Chirality transfer in ferroelectric liquid crystals. Acc Chem Res. 2001;34:845–853.
  • Pizzirusso A, Di Pietro ME, De Luca G, et al. Order and conformation of biphenyl in cyanobiphenyl liquid crystals: a combined atomistic molecular dynamics and 1H NMR study. ChemPhysChem. 2014;15:1356–1367.
  • Pietropaolo A, Nakano T. Molecular mechanism of polyacrylate helix sense switching across its free energy landscape. J Am Chem Soc. 2013;135:5509–5512.
  • Sakamoto T, Fukuda Y, Sato S, et al. Photoinduced racemization of an optically active helical polymer formed by the asymmetric polymerization of 2,7-bis(4-tert-butylphenyl)fluoren-9-yl acrylate. Angew Chem Int Ed. 2009;48:9308–9311.
  • Maeda K, Tamaki S, Tamura K, et al. Helicity induction and memory of the macromolecular helicity in a polyacetylene bearing a biphenyl pendant. Chem Asian J. 2008;3:614–624.
  • Wang Y, Sakamoto T, Nakano T. Molecular chirality induction to an achiral π-conjugated polymer by circularly polarized light. Chem Commun. 2012;48:1871–1873.
  • Wang Y, Sakamoto T, Koyama Y, et al. Photo-induced helix-helix transition of a polystyrene derivative. Polym Chem. 2014;5:718–721.
  • Wang Y, Kanibolotsky AL, Skabara PJ, et al. Chirality induction using circularly polarized light into a branched oligofluorene derivative in the presence of an achiral aid molecule. Chem Commun. 2016;52:1919–1922.
  • Nakano T. Tricks of light on helices: transformation of helical polymers by photoirradiation. Chem Rec. 2014;14:369–385.
  • Almenningen A, Bastiansen O, Fernholt L, et al. Structure and barrier of internal rotation of biphenyl derivatives in the gaseous state part 1. The molecular structure and normal coordinate analysis of normal biphenyl and pedeuterated biphenyl. J Mol Struct. 1985;128:59–76.
  • Charbonneau GP, Delugeard Y. Structural transition in polyphenyls. III. Crystal structure of biphenyl at 110 K. Acta Cryst. 1976;B32:1420–1423.
  • Ando S, Hironaka T, Kurosu H, et al. 13C NMR chemical shift as a probe for estimating the conformation of aromatic groups in the solid state: 1. Biphenyls Magn Reson Chem. 2000;38:241–250.
  • Pulham RJ, Steele DJ. Vibrational spectra of 4, 4′‐difluorobiphenyl‐d8 and the structure of biphenyls in solution. J Raman Spectrosc. 1984;15:217–223.
  • Eaton V, Steele D. Dihedral angle of biphenyl in solution and the molecular force field. J Chem Soc Faraday Trans. 1973;69:1601–1608.
  • Charbonnier S, Beguemsi ST, N’Guessan YT, et al. Dihedral angle of biphenyl compounds studied by theoretical calculations (dipole induced dipole, molecular mechanics) and experimental methods (electro-optic measurements, infrared spectroscopy). J Mol Struct. 1987;158:109–125.
  • Sizuki H. Relations between electronic absorption spectra and spatial configurations of conjugated systems. I Biphenyl Bull Chem Soc Jpn. 1959;32:1340–1350.
  • Celebre G, De Luca G, Longeri M. Exploiting the information content of dipolar couplings: Determination of the temperature dependence of the inter-ring twist angle of biphenyl dissolved in uniaxial mesophases liq. Cryst. 2010;37:923–933.
  • Pietropaolo A, Muccioli L, Berardi R, et al. A chirality index for investigating protein secondary structures and their time evolution. Proteins. 2008;70:667–677.
  • Pietropaolo A. Exploring metal-driven stereoselectivity of glycopeptides by free energy calculations. Pure Appl Chem. 2012;84:1919–1930.
  • Pietropaolo A. Chirality in biochemistry: where chemistry meets life. In:Bruno Pignataro, editor Chapter 12, A computational approach for investigating biomolecule conformations. Weinheim: Wiley-VCH, 2010: 293–312.
  • Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comp Chem. 2011;32:1456–1465.
  • Frisch MJ, Trucks GW,  Schlegel HB, et al. Gaussian 16, Revision B.01. M.J. Frisch. et al. Wallingford(CT): Gaussian, Inc.; 2016 .Available from: http://gaussian.com/citation/.
  • Furche F, Ahlrichs R, Wachsmann C, et al. Circular dichroism of helicenes investigated by time-dependent density functional theory. J Am Chem Soc. 2000;122:1717–1724.
  • Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett. 1996;256:454–464.
  • Grimme S. Calculation of the electronic spectra of large molecules. Rev Comput Chem. 2004;20:153–218.
  • Pietropaolo A, Tang S, Raymo FM. Free-energy predictions and absorption spectra calculations for supramolecular nanocarriers and their photoactive cargo. Nanoscale. 2017;9:4989–4994.
  • Heng W, Pietropaolo A, Wenbin W, et al. Right-handed 2/1 helical arrangement of benzene molecules in cholic acid crystal established by experimental and theoretical circular dichroism. RSC Adv. 2015;5:101110–101114.
  • Pietropaolo A, Wang Y, Nakano T. Predicting the switchable screw sense in fluorene-based polymers. Angew Chem Int Ed. 2015;54:2688–2692.
  • De Cominges BE, Piñeiro MM, Mosteiro L, et al. Temperature dependence of thermophysical properties of hexane + 1-hexanol. J Chem Eng Data. 2001;46:1206–1210.
  • Karpfen A, Choi CH, Kertesz M. Single-bond torsional potentials in conjugated systems: a comparison of ab initio and density functional results. J Phys Chem. 1997;101:7426–7433.
  • Twist Angles GF. Rotational energy barriers of biphenyl and substituted biphenyls. J Phys Chem A. 2002;106:3823–3827.
  • Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–1799.
  • Nakano T. Synthesis, structure and function of pi-stacked polymers. Polym.J. 2010;42:103–123.
  • Nakano T. pi-stacked polymers and molecules. Tokyo: Springer; 2016.
  • Nakano T, Takewaki K, Yade T, et al. Dibenzofulvene, a 1,1-diphenylethylene analogue, gives a pi-stacked polymer by anionic, freeradical,and cationic catalysts. J Am Chem Soc. 2001;123:9182–9183.
  • Nakano T, Yade T. Synthesis, structure, and photophysical and electrochemical properties of a pi-stacked polymer. J Am Chem Soc. 2003;125:15474–15484.
  • Nakano T, Yade T, Fukuda Y, et al. Free-radical polymerization of dibenzofulvene leading to a pi-stacked polymer: structure and properties of the polymer and proposed reaction mechanism. Macromolecules. 2005;38:8140–8148.
  • Nageh H, Wang Y, Nakano T. Polymer, cationic polymerization of dibenzofulvene leading to a -stacked polymer. Polymer (Guildf). 2018;144:51–56.
  • Rubio M, Merch N M, Orti E. The internal rotational barrier of biphenyl studied with multiconfigurational second-order perturbation theory (CASPT2). Theoretica Chimica Acta. 1995;91:17–29.
  • Tsuzuki S, Uchimaru T, Matsumura K, et al. Torsional potential of biphenyl:Ab initio calculations with the dunning correlation consisted basis sets. J Chem Phys. 1999;110:2858–2861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.