207
Views
7
CrossRef citations to date
0
Altmetric
Article

Low voltage blue-phase liquid crystal display with insulating protrusion sandwiched between dual-layer electrodes

, , , , , , , , , & show all
Pages 523-534 | Received 07 Jul 2018, Accepted 12 Aug 2018, Published online: 28 Aug 2018

References

  • Kim DH, Lim YJ, Kim DE, et al. Past, present, and future of fringe-field switching-liquid crystal display. J Inf Display. 2014;15:99–106.
  • Chen HW, Lee JH, Lin BY, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light-SCI Appl. 2018;7:17168.
  • Chen Y, Wu ST. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices. J Appl Polym Sci. 2014;131:40556.
  • Xu D, Yan J, Yuan J, et al. Electro-optic response of polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2014;105:011119.
  • Chen KM, Gauza S, Xianyu H, et al. Submillisecond graylevel response time of a polymer-stabilized blue-phase liquid crystal. J Disp Technol. 2010;6:49–51.
  • Sun Y, Zhao Y, Li Y, et al. Optimisation of in-plane-switching blue-phase liquid crystal display. Liq Cryst. 2014;41:717–720.
  • Wyatt D, Chen H, Wu ST, et al. Wide-color-gamut LCDs with vivid color LED technology. SID Int Symp Dig Tech. 2017;48:992–995.
  • Huang Y, Chen H, Tan G, et al. Optimized blue-phase liquid crystal for field-sequential-color displays. Opt Mater Experss. 2017;7:641–650.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Gou F, Chen H, Li MC, et al. Submillisecond-response liquid crystal for high-resolution virtual reality displays. Opt Express. 2017;25:7984–7997.
  • Rao L, Yan J, Wu ST, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2011;98:081109.
  • Xu DM, Chen Y, Liu YF, et al. Refraction effect in an in-plane-switching blue phase liquid crystal cell. Opt Express. 2013;21:24721–24735.
  • Rao L, Yan J, Wu ST, et al. Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays. J Soc Inf Display. 2010;18:954–959.
  • Iwata T, Suzuki K, Higuchi H, et al. A method for enlarging the Kerr constant of polymer-stabilised blue phases. Liq Cryst. 2009;36:947–951.
  • Rao L, Cheng HC, Wu ST. Low voltage blue-phase LCDs with double-penetrating fringe fields. J Disp Technol. 2010;6:287–289.
  • Choi SW, Yamamoto SI, Haseba Y, et al. Optically isotropic-nanostructured liquid crystal composite with high Kerr constant. Appl Phys Lett. 2008;92:043119.
  • Chen Y, Xu D, Wu ST, et al. A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2013;102:141116.
  • Chen H, Lan YF, Tsai CY, et al. Low-voltage blue-phase liquid crystal display with diamond-shape electrodes. Liq Cryst. 2017;44:1124–1130.
  • Li GP, Dou H, Chu F, et al. Low voltage and high transmittance transflective blue-phase liquid crystal display with opposite polar electrodes. Liq Cryst. 2018;45:410–414.
  • Su Z, Chen Y, Lu J, et al. High-transmittance polymer-stabilised blue-phase liquid crystal display with double-sided protrusion electrodes. Liq Cryst. 2013;40:976–979.
  • Mao JL, Wang J, Fan HX, et al. Low-voltage and high-transmittance blue-phase liquid crystal display with concave electrode. Liq Cryst. 2016;43:535–539.
  • Li Y, Wu ST. Transmissive and transflective blue-phase LCDs with enhanced protrusion electrodes. J Disp Technol. 2011;7:359–361.
  • Guo Y, Fu M, Ren Y, et al. Low-voltage blue-phase liquid crystal display with single-penetration electrodes. Liq Cryst. 2017;44:2321–2326.
  • Fan H, Wang QH, Cui J, et al. Low voltage blue-phase liquid crystal display with triple-penetrating fringe fields. Liq Cryst. 2015;42:41–45.
  • Li Y, Huang S, Rong N, et al. Transmissive and transflective blue-phase LCDs with double-layer IPS electrodes. J Disp Technol. 2016;12:122–128.
  • Chen Y, Sun Y, Yang G. Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes. Liq Cryst. 2011;38:555–559.
  • Hung CC, Hsieh HY, Lin YT, et al. Novel four-transistor pixel circuit using source-follower structure for field-sequential-color blue-phase liquid crystal displays. SID Int Symp Dig Tech. 2017;48:482–485.
  • Kim M, Kim MS, Kang BG, et al. Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays. J Phys D Appl Phys. 2009;42:235502.
  • Zhou F, Wang QH, Wu D, et al. Polymer-stabilized blue phase liquid crystal display with slanted wall-shaped electrodes. Chin Opt Lett. 2012;10:022301.
  • Tsai CY, Yu FC, Lan YF, et al. A novel blue phase liquid crystal display applying wall-electrode and high driving voltage circuit. SID Int Symp Dig Tech. 2015;46:542–544.
  • Guo Y, Wang Y, Zhang C, et al. Blue-phase liquid crystal display with insulating protrusion. Liq Cryst. 2018;45:1585-1593.
  • Jiao M, Li Y, Wu ST. Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes. Appl Phys Lett. 2010;96:011102.
  • Algorri JF, Urruchi V, Sánchez-Pena JM. Reflective sidewall electrodes for low voltage and high transmittance blue-phase liquid crystal displays. Liq Cryst. 2015;42:941–946.
  • Chu F, Dou H, Song YL, et al. A transflective blue-phase liquid crystal display with alternate electrodes. Liq Cryst. 2017;44:1316–1320.
  • Liu J, Ma H, Sun Y. Blue-phase liquid crystal display with high dielectric material. Liq Cryst. 2016;43:1748–1752.
  • Dang ZM, Xu HP, Wang HY. Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett. 2007;90:012901.
  • Yang H, Wang Q, Wang L, et al. Improved dielectric properties and microwave absorbing properties of SiC Nanorods/Ni core-shell structure. Funct Mater Lett. 2017;10:1750069.
  • Wang J, Qi S, Sun Y, et al. Dielectric behavior of a flexible three-phase polyimide/BaTiO3/multi-walled carbon nanotube composite film. Funct Mater Lett. 2016;9:1650006.
  • Huang C, Zhang Q. Fully Functionalized high-dielectric-constant nanophase polymers with high electromechanical response. Adv Mater. 2010;17:1153–1158.
  • Huang C, Zhang Q. Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv Funct Mater. 2010;14:501–506.
  • Wang CC, Song JF, Bao HM, et al. Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater. 2008;18:1299–1306.
  • Guo Y, Wang Y, Ren Y, et al. Enhanced dielectric properties of conductive-dielectric composites by reducing particle size and core@shell method. Funct Mater Lett. 2018;11:1850010.
  • Zhang L, Liu Z, Lu X, et al. Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy. 2016;26:550–557.
  • Kim SS, Berkeley BH, Kim KH, et al. New technologies for advanced LCD-TV performance. J Soc Inf Display. 2004;12:353–359.
  • Park JH, Oh SW, Huh JW, et al. Four-domain electrode structure for wide viewing angle in a fringe-field-switching liquid crystal display. J Disp Technol. 2016;12:667–672.
  • Yuan J, Xu D, Wu ST. An ultra-low voltage blue phase LCD for mobile applications. SID Int Symp Dig Tech. 2015;46:1520–1523.
  • Lee GS, Kim JC, Yoon TH, et al. Electrode structure for color shift reduction in fringe-field switching mode. Opt Express. 2007;15:5405–5415.
  • Choi TH, Woo JH, Choi YY, et al. Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals. Opt Express. 2016;24:27569–27576.
  • Kim SU, Lee BY, Suh JH, et al. Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens. Liq Cryst. 2016;44:364–371.
  • Rao LH, Ge ZB, Wu ST, et al. Zigzag electrodes for suppressing the color shift of Kerr effect-based liquid crystal displays. J Disp Technol. 2010;6:115–120.
  • Lu R, Wu ST, Ge Z, et al. Bending angle effects on the multi-domain in-plane-switching liquid crystal displays. J Disp Technol. 2005;1:207–216.
  • Shin YC, Park MK, Kim B, et al. Micropatterned vertical alignment liquid crystal mode with dual threshold voltages for improved off-axis gamma distortion. IEEE T Electron Dev. 2018;65:150–157.
  • Lu R, Wu ST, Lee SH. Reducing the color shift of a multidomain vertical alignment liquid crystal display using dual threshold voltages. Appl Phys Lett. 2008;92:051114.
  • Kim YJ, Kim JH, Her JH, et al. Viewing angle switching of liquid crystal display using fringe-field switching to control off-axis phase retardation. J Phys D Appl Phys. 2010;43:085501.
  • Kim HJ, Lim YJ, Murali G, et al. Reduction of gamma distortion in oblique viewing directions in polymer-stabilized vertical alignment liquid crystal mode. Curr Opt & Photonics. 2017;1:157–162.
  • Gao Y, Luo Z, Zhu R, et al. A high performance single-domain LCD with wide luminance distribution. J Disp Technol. 2015;11:315–324.
  • Yan J, Xu D, Cheng HC, et al. Turning film for widening the viewing angle of a blue phase liquid crystal display. Appl Opt. 2013;52:8840–8844.
  • Mun BJ, Lee GD. The optical technology to improve the gamma-curve in liquid crystal display modes. Mol Cryst Liq Cryst. 2014;595:92–97.
  • Yan J, Cheng HC, Gauza S, et al. Extended Kerr effect of polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:071105.
  • Kerr J. A new relation between electricity and light: dielectrified media birefringent. Philos Mag. 1875;50:337–348.
  • Yan J, Rao L, Jiao M, et al. Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J Mater Chem. 2011;21:7870–7877.
  • Gerber PR. Electro-optical effects of a small-pitch blue-phase system. Mol Cryst Liq Cryst. 1985;116:197–201.
  • Ge Z, Rao L, Gauza S, et al. Modeling of blue-phase liquid crystal displays. J Disp Technol. 2009;5:250–256.
  • Chu F, Dou H, Li GP, et al. A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes. Liq Cryst. 2017;45:715–720.
  • Oh SW, Park MK, Lee HJ, et al. Improvement of asymmetric viewing angle properties in single-domain fringe-field-switching liquid crystal mode by using parallel-rubbed alignment surfaces. Liq Cryst. 2014;41:572–584.
  • Oh SW, Kim AK, Park BW, et al. Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display. J Inf Disp. 2015;16:1–10.
  • Zhu X, Ge Z, Wu ST. Analytical solutions for uniaxial film-compensated wide-view liquid crystal displays. J Disp Technol. 2006;2:2–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.