65
Views
7
CrossRef citations to date
0
Altmetric
Article

Synthesis, characterisation and SPIE analysis in pure and nano-dispersed N-(p-n-hexyloxybenzylidene)-p-n-Nonyloxy aniline

ORCID Icon, ORCID Icon, , &
Pages 743-753 | Received 28 Jun 2018, Accepted 11 Sep 2018, Published online: 04 Oct 2018

References

  • Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater. 2007;17(3):483–503.
  • Bisoyi HK, Kumar S. Liquid crystal nano science an emerging avenue of soft self assembly. Chem Soc Rev. 2011;40:306–319.
  • Rambabu M, Prasad KRS, Madhav BTP, et al. Determination of phase transitions in hydrogen bonded complexes (NOBA: PFOA) using textual image processing techniques. ARPN J Eng Appl Sci. 2016;11:520–527.
  • Madhav BTP, Pardhasaradhi P, Manepalli RKNR, et al. Image enhancement using virtual contrast image fusion on Fe3O4 and Zno nanodispersed decyloxy benzoic acid. Liq Cryst. 2015;42:1329–1336.
  • Madhav BTP, Pardhasaradhi P, Manepalli RKNR, et al. Homomorphic filtering textual analysis technique to reduce multiplicative noise in the 110ba nano-doped liquid crystalline compounds. Phase Transitions. 2015;88:735–744.
  • Madhav BTP, Pardhasaradhi P, Manepalli RKNR, et al. Histogram equalization technique to analyze induced cholesteric phase in nano-doped liquid crystalline compounds. Liq Cryst. 2015;42:989–997.
  • Madhav BTP, Pardhasaradhi P, Kishore PVV, et al. Image enhancement of nano-dispersed N-(p-n decyloxybenzylidene)-p-n-hexyloxy aniline using combined unsharp masking. Liquid Crystals Today. 2016;25:74–80.
  • Pardhasaradhi P, Madhav BTP, Rao MV, et al. Gradient measurement technique to identify phase transitions in nano-dispersed liquid crystalline compounds. Phase Transitions. 2016;89:902–909.
  • Shiraishi Y, Toshima N, Maeda K, et al. Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Appl Phys Lett. 2002;81(15):2845–2847.
  • Lynch MD, Patrick DL. Organizing carbon nanotubes with liquid crystals. Nano Lett. 2002;2(11):1197–1201.
  • Dierking I, Scalia G, Morales PJ. Liquid crystal-carbon nanotube dispersions. J Appl Phys. 2005;97(4):044309-1-044309-5.
  • Basu R, Iannacchione G. Carbon nanotube dispersed liquid crystal: a nano electromechanical system. Appl Phys Lett. 2008;93(18):183105-1-183105-3.
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2890–2898.
  • Russell JM, Oh S, LaRue I, et al. Alignment of nematic liquid crystals using carbon nanotube films. Thin Solid Films. 2006;509(1–2):53–57.
  • Basu R, Iannacchione G. Evidence for directed self-assembly of quantum dots in a nematic liquid crystal. J Appl Phys. 2009;106(12):124312.
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int. 2006;45(1):38–68.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals Angew. Chem Int. 2008;47(15):2754–2787.
  • Tschierske C. Liquid crystal engineering – new complex mesophase structures and their relations topolymer morphologies, nanoscale patterning and crystal engineering. Chem Soc Rev. 2007;36:1930–1970.
  • Venkata Rao D, Pardhasaradhi P, Pisipati VGKM, et al. Orientational order parameter studies on 3.Om and 3O.Om liquid crystals. Phase Transitions. 2015;88:137–152.
  • Sastry PS, Srinivasu C, Pardhasaradhi P, et al. Orientational order parameter, S, in N-(p-n-ethoxy benzylidene)-p-n-alkoxy anilines, 2O.Om LC compounds. Phase Transit. 2016;89:37–51.
  • Sastry PS, Pardhasaradhi P, Srinivasu C, et al. Synthesis, characterization and phase transition studies in N-(-4-ethyloxybenzlydene)-4’-alkoxyanilines, Liquid Crystals 2016;43(5):632–638.
  • Sastry PS, Pardhasaradhi P, Srinivasu C, et al. Synthesis, characterization and phase transition studies in N-(-4-ethyloxybenzlydene)-4’-alkoxyanilines, Liquid Crystals, 2016;43(5):632–638.
  • Rajeswari BR, Pardhasaradhi P, Nanachara Rao MR, et al. Pisipati, Optical study of orientational order parameter in p-n-(Phenyl Benzylidene) -p-Alkyl and alkyloxy anilines. Solid State Phenomena. 2011;181-182:75–78.
  • Bhuyan D, Pardhasaradhi P, Gogoi B, et al. Phase transition studies of 6.O12O.6 and 7.O6O.7 using density measurements. Molecular Crystals and Liquid Crystals. 2011;540:205–212.
  • De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3LinkManagerBM_REF_l5HhVfsu(2):133–149.
  • Reiss G, Hutten A. Magnetic nanoparticles: applications beyond data storage. Nat. 2005;4:725.
  • Scott JF. Ferroelectric Memories. Berlin: Springer;2000 1–251. ISBN:3-540-66387-8.
  • Celik T, Li H-C. Residual spatial entropy-based contrast enhancement and gradient-based contrast measures. J Modern Opt. 2016;63(16):1600–1617.
  • Huang S-C, Cheng F-C, Chiu Y-S. Efficient contrast enhancement with adaptive gamma correction. IEEE Trans Image Process. 2013;22(3):1032–1041.
  • Mukherjee J, Mitra SK. Enhancement of color images by scaling the DCT coefficients. IEEE Trans Image Process. 2008;17(10):1783–1794.
  • Tang J, Peli E, Acton S. Image enhancement using a contrast measure in the compressed domain. IEEE Sig Process Lett. 2003;10(10):289–292.
  • Cheng H, Shi X. A simple and effective histogram equalization approach to image enhancement. Digital Signal Process. 2004;14(2):158–170.
  • Kim Y-T. Contrast enhancement using brightness preserving bi-histogramequalization. Consum Electron IEEE Trans. 1997;43(1):1–8.
  • Wang Y, Chen Q, Zhang B. Image enhancement based on equal area dualistic sub-image histogram equalization method. Consum Electron IEEE Trans. 1999;45(1):68–75.
  • Chen S-D, Ramli AR. Minimum mean brightness error bi-histogram equalization in contrast enhancement. Consum Electron IEEE Trans. 2003;49(4):1310–1319.
  • Chen S-D, Ramli AR. Preserving brightness in histogram equalization-based contrast enhancement techniques. Digital Signal Process. 2004;14(5):413–428.
  • Huang S-C, Cheng F-C, Chiu Y-S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. Image Process IEEE Trans. 2013;22(3):1032–1104.
  • Yun S-H, Kim JH, Kim S, Consumer electronics. Contrast enhancement using a weighted histogram equalization. (ICCE), IEEE International Conference, Las Vegas, Jan 2011; p. 203–204.
  • Tsai C-M, Yeh Z-M, Wang Y-F. Decision tree-based contrast enhancement for various color images. Mach Vis Appl. 2011;22(1):21–37.
  • Rahman S, Rahman M, Abdullah-Al-Wadud M, et al. An adaptive gamma correction for image enhancement. EURASIP J Image Vide. 2016;35. DOI:10.1186/s13640-016-0138-1.
  • Cao G, Huang L, Tian H, et al. Contrast enhancement of brightness-distorted images by improved adaptive gamma correction. Computers and Electrical Engineering. 2017;1–14. DOI:10.1016/j.compeleceng.2017.09.012
  • Jaya VL, Gopikakumari R. IEM: A new image enhancement metric for contrast and sharpness measurements. Int J Comput Appl. 2013;79:1–9.
  • G. W. Gray, J. W. G. Goodby. Smectic Liquid Crystals textures and structures, Leonard Hill, 1984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.