380
Views
11
CrossRef citations to date
0
Altmetric
Article

Highly improved dielectric behaviour of ferronematic nanocomposite for display application

, &
Pages 772-786 | Received 07 Jul 2018, Accepted 23 Sep 2018, Published online: 10 Oct 2018

References

  • Collings PJ, Patel JS. Handbook of liquid crystal research. New York (NY): Oxford University Press; 1997.
  • Sawada A, Nakazono Y, Tarumi K, et al. Complex dielectric constant of liquid crystal materials containing ionic impurities in low frequency region. Mol Cryst Liq Cryst. 1998;318:225–242.
  • Garbovskiy Y. Nanoparticle enabled thermal control of ions in liquid crystals. Liq Cryst. 2017;44(6):948–955.
  • Garbovskiy Y, Glushchenko I. Nano-objects and ions in liquid crystals: ion trapping effect and related phenomena. Crystals. 2015;5(4):501–533.
  • Stamatoiu O, Mirzaei J, Feng X, et al. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. Top Curr Chem. 2012;318:331–394.
  • Urbanski M, Lagerwall JPF. Nanoparticles dispersed in liquid crystals: impact on conductivity, low-frequency relaxation and electro-optical performance. J Mater Chem C. 2016;4:3485–3491.
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40:306–319.
  • Peterson MSE, Georgiev G, Atherton TJ, et al. Dielectric analysis of the interaction of nematic liquid crystals with carbon nanotubes. Liq Cryst. 2018;45(3):450–458.
  • Vardanyan KK, Daykin A, Kilmer B. Study on cyanobiphenyl nematic doped by silver nanoparticles. Liq Cryst. 2017;44(8):1240–1252.
  • Rasna MV, Cmok L, Evans DR, et al. Phase transitions, optical, dielectric and viscoelastic properties of colloidal suspensions of BaTiO3 nanoparticles and cyanobiphenyl liquid crystals. Liq Cryst. 2015;42(7):1059–1067.
  • Gupta M, Satpathy I, Roy A, et al. Nanoparticle induced director distortion and disorder in liquid crystal-nanoparticle dispersions. J Colloid Interface Sci. 2010;352:292–298.
  • Shcherbinin DP, Konshina EA. Ionic impurities in nematic liquid crystal doped with quantum dots CdSe/ZnS. Liq Cryst. 2017;44(4):648–655.
  • Mouhli A, Ayeb H, Othman T, et al. Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB. Phys Rev E. 2017;96:012706.
  • Jessy PJ, Shalini M, Patel N, et al. Thermo optical study of nematic liquid crystal doped with ferrofluid. AIP Conf Proc. 2017;1837:040066.
  • Kredentser SV, Kulyk MM, Kalita VM, et al. Magneto-induced anisotropy in magnetic colloids of superparamagnetic magnetite nanoparticles in an external magnetic field. Soft Matter. 2017;13:4080–4087.
  • Garbovskiy Y, Baptist JR, Thompson J, et al. Increasing the switching speed of liquid crystal devices with magnetic nanorods. Appl Phys Lett. 2012;101:181109.
  • Brochard F, de Gennes PG. Theory of magnetic suspensions in liquid crystals. J Phys France. 1970;31(7):691–708.
  • Chen SH, Amer NM. Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals. Phys Rev Lett. 1983;51:2298–2301.
  • He WL, Zhang WK, Xu H, et al. Preparation and optical properties of Fe3O4 nanoparticles-doped blue phase liquid crystal. Phys Chem Chem Phys. 2016;18:29028–29032.
  • Gdovinova V, Schroer MA, Tomasovicova N, et al. Structuralization of magnetic nanoparticles in 5CB liquid crystals. Soft Matter. 2017;13:7890–7896.
  • Appel I, Nadasi H, Reitz C, et al. Doping of nematic cyanobiphenyl liquid crystals with mesogen-hybridized magnetic nanoparticles. Phys Chem Chem Phys. 2017;19:12127–12135.
  • Petrescu E, Cirtoaje C, Stan C. Dynamic behavior of a nematic liquid crystal mixed with CoFe2O4 ferromagnetic nanoparticles in a magnetic field. Beilstein J Nanotechnol. 2017;8:2467–2473.
  • Gdovinova V, Tomasovicova N, Eber N, et al. Influence of the anisometry of magnetic particles on the isotropic–nematic phase transition. Liq Cryst. 2014;41(12):1773–1777.
  • Tomasovicova N, Timko M, Mitroova Z, et al. Capacitance changes in ferronematic liquid crystals induced by low magnetic fields. Phy Rev E. 2013;87:014501.
  • Petrov DA, Zakhlevnykh A. Freedericksz transition in compensated ferronematic liquid crystals. Mol Cryst Liq Cryst. 2012;557:60–72.
  • Mertelj A, Lisjak D, Drofenik M, et al. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 2015;504:237–241.
  • Kopkansky P, Kovalchuk A, Gornitska O, et al. Dielectric spectroscopy of liquid crystal doped with Fe3O4 nanoparticles. Phys Procedia. 2010;9:36–40.
  • Koysal O, Gokcen M, Yildirim M. The Fe3O4 nanoparticle doping effect in liquid crystal on electrical and dielectric properties. Can J Phys. 2013;91(5):420–423.
  • Zakerhamidi MS, Shoarinejad S, Mohammadpour S. Fe3O4 nanoparticle effect on dielectric and ordering behavior of nematic liquid crystal host. J Mol Liq. 2014;191:16–19.
  • Maleki A, Majles Ara MH, Saboohi F. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles. Phase Transitions. 2017;90:371–379.
  • Khushboo, Sharma P, Malik P, et al. Textural, thermal, optical and electrical properties of Iron nanoparticles dispersed 4′-(Hexyloxy)-4-biphenylcarbonitrile liquid crystal mixture. Liq Cryst. 2017;44(11):1717–1726.
  • Nayek P, Li G. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device. Scientific Reports. 2014;5:10845.
  • Thomas JJ, Shinde AB, Krishna PSR, et al. Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite. J. Alloys Compd. 2013;546:77–83.
  • Deka S, Joy PA. Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J Am Ceram Soc. 2007;90(5):1494–1499.
  • Bachmann R, Barner K. Stable suspensions of ferroelectric BaTiO3 particles. Solid State Commun. 1988;68:865–869.
  • Zangana SA, Turner M, Dierking I. A comparison between size dependent paraelectric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. J Appl Phys. 2017;121:085105.
  • Garbovskiy Y, Glushchenko A. Ferroelectric nanoparticles in liquid crystals: recent progress and current challenges. Nanomaterials. 2017;7:361.
  • Demus D, Richter L. Textures of liquid crystals. New York (NY): Verlag Chemie; 1978.
  • Dierking I. Textures of liquid crystals. Germany (DE): Wiley-VCH Verlag GmbH & Co.KGaA; 2003.
  • Nehring J, Saupe A. On the schlieren texture in nematic and smectic liquid crystals. J Chem Soc Faraday Trans. 1972;68:1–15.
  • Lydon JE, Gleeson H, Jull EIL. The identification of the sign and strength of disclinations in the schlieren (nucleated domain) texture of the nematic phase by optical microscopy. Liq Cryst. 2017;44(12–13):1775–1786.
  • Zhou QF, Wan XH, Zhang F, et al. Polymeric nematic schlieren textures with singularities of high strength. Liq Cryst. 1993;13(6):851–858.
  • Hung FR, Gettelfinger BT, Koenig GM, et al. Nanoparticles in nematic liquid crystals: interactions with nanochannels. J Chem Phys. 2007;127:124702.
  • Gorkunov MV, Osipov MA. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter. 2011;7:4348–4356.
  • Ranjkesh A, Choi JC, Park JS, et al. Order parameter and crossover temperature from temperature-dependent refractive indices for low birefringence liquid crystals. J Mol Liq. 2017;230:280–289.
  • Jessy PJ, Radha S, Patel N. Phase behavior of thermotropic chiral liquid crystal with wide blue phase. AIP Conf Proc. 2018;1942:040013.
  • Li J, Wu ST. Two coefficient Cauchy model for low birefringence liquid crystals. J Appl Phys. 2004;96:170–174.
  • Jessy PJ, Radha S, Patel N. Morphological, optical and dielectric behavior of chiral nematic liquid crystal mixture: study on effect of different amount of chirality. J Mol Liq. 2018;255:215–223.
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9:341–351.
  • Garbovskiy Y. Nanomaterial in liquid crystals as ion-generating and ion-capturing objects. Crystals. 2018;8:264.
  • Garbovskiy Y. Impact of contaminated nanoparticles on the non-monotonous change in the concentration of mobile ions in liquid crystals. Liq Cryst. 2016;43(5):664–670.
  • Garbovskiy Y. Kinetics of ion-capturing/ion-releasing processes in liquid crystal devices utilizing contaminated nanoparticles and alignment films. Nanomaterials. 2018;8:59.
  • Dolgov L, Kovalchuk O, Lebovka N, et al. Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities. In: Marulanda JM, editor. Carbon nanotubes. Vukovar: InTech; 2010; p. 463–482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.