178
Views
7
CrossRef citations to date
0
Altmetric
Article

Dynamic holographic liquid crystal device containing nanoscale CuPc film

, , , , , , & show all
Pages 1108-1116 | Received 17 Aug 2018, Accepted 04 Dec 2018, Published online: 03 Jan 2019

References

  • Moerner WE, Silence SM. Polymeric photorefractive materials. Chem Rev. 1994;94:127–155.
  • Tay S, Blanche PA, Voorakaranam R, et al. An updatable holographic three-dimensional display. Nature. 2008;451:694–698.
  • Blanche P-A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature. 2010;468:80–83.
  • Abbott SB, Daly KR, D’Alessandro G, et al. Photorefractive control of surface plasmon polaritons in a bybrid liquid crystal cell. Opt Lett. 2012;37:2436–2438.
  • Rudenko E, Sukhov A. Photoinduced electrical conductivity and photorefraction in a nematic liquid crystal. JETP Lett. 1994;59:142–146.
  • Khoo IC, Li H, Liang Y. Observation of orientational photorefractive effects in nematic liquid crystals. Opt Lett. 1994;19:1723–1725.
  • Zhang J, Ostroverkhov V, Singer KD, et al. Electrically controlled surface diffraction gratings in nematic liquid crystals. Opt Lett. 2000;25:414–416.
  • Pagliusi P, Cipparrone G. Surface-induced photorefractive-like effect in pure liquid crystals. Appl Phys Lett. 2002;80:168–170.
  • Xue T, Zhao H, Meng C, et al. Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers. Opt Express. 2014;22:20964–20972.
  • Zhao H, Xue T, Su H, et al. Subwavelength coupling strengthened optical amplification in nematic liquid crystal cells. Appl Phys Lett. 2017;111:111602.
  • Wiederrecht GP, Yoon BA, Wasielewski MR. High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules. Science. 1995;270:1794–1797.
  • Khoo IC, Slussarenko S, Guenther BD, et al. Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals. Opt Lett. 1998;23:253–255.
  • Khoo IC, Guenther BD, Wood MV, et al. Coherent beam amplification with a photorefractive liquid crystal. Opt Lett. 1997;22:1229–1231.
  • Kaczmarek M, Dyadyusha A, Slussarenko S, et al. The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers. J Appl Phys. 2004;96:2616–2623.
  • Lee W, Lee -C-C. Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers. Nanotechnology. 2006;17:157–162.
  • Dradrach K, Bartkiewicz S, Miniewicz A. Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots. Appl Phys Lett. 2014;105:231903.
  • Lian C, Zhao H, Pei Y, et al. Fast response beam coupling in liquid crystal cells sandwiched between ZnSe substrates. Opt Express. 2012;20:15843–15852.
  • Li X, Li Y, Xiang Y, et al. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display. Opt Express. 2016;24:8824–8831.
  • Cook G, Glushchenko A, Reshetnyak VY, et al. Nanoparticle doped organic-inorganic hybrid phtorefractives. Opt Express. 2008;16:4015–4022.
  • Reshetnyak VY, Pinkevych IP, Cook G, et al. Two beam energy exchange in hybrid liquid crystal cells with photorefractive field controlled boundary conditions. AIP Adv. 2016;6:095207.
  • Law K-Y. Organic photoconductive materials: recent trends and developments. Chem Rev. 1993;93:449–486.
  • Pagliusi P, Cipparrone G. Extremely sensitive light-induced reorientation in nondoped nematic liquid crystal cells due to photoelectric activation of the interface. J Appl Phys. 2003;93:9117–9122.
  • Khoo IC, Wu ST. Optics and nonlinear optics of liquid crystals. Singapore: World Scientific Publishing Co Pte Ltd; 1993.
  • Ong HL, Schadt M, Chang IF. Material parameters and intrinsic optical bistability in room temperature nematics RO-TN-200, -201, -403, E7, m1, and m3. Mol Cryst Liq Cryst. 1986;132:45–52.
  • Acosta EJ, Towler MJ, Walton HG. The role of surface tilt in the operation of pi-cell liquid crystal devices. Liq Cryst. 2000;27:977–984.
  • Sekhar PR, Janardhanam RV, Jyothi I, et al. Effect of copper phthalocyanine thickness on surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction. Appl Phys A. 2018;124:115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.