409
Views
7
CrossRef citations to date
0
Altmetric
Article

Dielectric properties of two high birefringence liquid crystal mixtures in the Sub-THz band

, , , , , & show all
Pages 83-88 | Received 02 Apr 2019, Accepted 06 Jun 2019, Published online: 08 Jul 2019

References

  • Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 2016;34:810–824.
  • Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. J Appl Phys. 2010;107:111101.
  • Pawar AY, Sonawane DD, Erande KB, et al. Terahertz technology and its applications. Drug Invention Today. 2013;5:157–163.
  • Piesiewicz R, Jansen C, Mittleman D, et al. Scattering analysis for the modeling of THz communication systems. IEEE T Antenn Propag. 2007;55:3002–3009.
  • Vieweg N, Shakfa MK, Koch M. Molecular terahertz polarizability of PCH5, PCH7, and 5OCB. J Infrared Millim Te. 2011;32:1367–1370.
  • Yang J, Wang P, Gao S, et al. Tunable terahertz transmission properties of double-layered metal hole-loop arrays using nematic liquid crystal. J Infrared Millim Te. 2019;40:276–287.
  • Biabanifard S, Biabanifard M, Asgari S, et al. Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt Commun. 2018;427:418–425.
  • Paul O, Beigang R, Rahm M. Highly selective terahertz bandpass filters based on trapped mode excitation. Opt Express. 2009;17:18590–18595.
  • Wu Y, Ruan XZ, Chen CH, et al. Graphene/liquid crystal based terahertz phase shifters. Opt Express. 2013;21:21395–21402.
  • Peroukidis SD, Yannopapas V, Vanakaras AG, et al. Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal. Liq Cryst. 2014;41:1430–1435.
  • Li XF, Tan N, Pivnenko M, et al. High-birefringence nematic liquid crystal for broadband THz applications. Liq Cryst. 2016;43:955–962.
  • Alihosseini F, Ahmadi V, Mir A. Design and analysis of a tunable liquid crystal switch/filter with metallic nano-slits. Liq Cryst. 2015;42:1638–1642.
  • Yang J, Xia TY, Jing SC, et al. Electrically tunable reflective terahertz phase shifter based on liquid crystal. J Infrared Millim Te. 2018;39:439–446.
  • Kowerdziej R, Olifierczuk M, Salski B, et al. Tunable negative index metamaterial employing in-plane switching mode at terahertz frequencies. Liq Cryst. 2012;39:827–831.
  • Kowerdziej R, Stanczyk T, Parka J. Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal. Liq Cryst. 2015;42:430–434.
  • Zhou S, Shen Z, Kang R, et al. Liquid crystal tunable dielectric metamaterial absorber in the terahertz range. Appl Sci. 2018;8:2211.
  • Deng G, Xia T, Jing S, et al. A tunable metamaterial absorber based on liquid crystal intended for F frequency band. IEEE Antenn Wirel PR. 2017;16:2062–2065.
  • Vieweg N, Jansen C, Shakfa MK, et al. Molecular properties of liquid crystals in the terahertz frequency range. Opt Express. 2010;18:6097–6107.
  • Vieweg N, Shakfa MK, Koch M. BL037: A nematic mixture with high terahertz birefringence. Opt Commun. 2011;284:1887–1889.
  • Park H, Parrott EPJ, Fan F, et al. Evaluating liquid crystal properties for use in terahertz devices. Opt Express. 2012;20:11899–11905.
  • Wang L, Lin XW, Liang X, et al. Large birefringence liquid crystal material in terahertz range. Opt Mater Express. 2012;2:1314–1319.
  • Reuter M, Vieweg N, Fischer BM, et al. Highly birefringent, low-loss liquid crystals for terahertz applications. Apl Mater. 2013;1:012107.
  • Vieweg N, Shakfa MK, Scherger B, et al. THz properties of nematic liquid crystals. J Infrared Millim Te. 2010;31:1312–1320.
  • Dickie R, Baine P, Cahill R, et al. Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces. Electron Lett. 2012;48:611–612.
  • Lu HB, Jing SC, Xia TY, et al. Measurement of LC dielectric constant at lower terahertz region based on metamaterial absorber. Ieice Electron Expr. 2017;14:20170469.
  • Jia D, Yang CL, Li XP, et al. Optical hyperbolic metamaterials based on nanoparticles doped liquid crystals. Liq Cryst. 2014;41:207–213.
  • Lapanik V, Sasnouski G, Timofeev S, et al. New highly anisotropic liquid crystal materials for high-frequency applications. Liq Cryst. 2018;45:1242–1249.
  • Li JL, Peng ZH, Chen R, et al. Investigation of terminal olefine in the isothiocyanatotolane liquid crystals with alkoxy end group. Liq Cryst. 2018;45:1498–1507.
  • Jankowiak A, Ringstrand B, Januszko A, et al. Liquid crystals with negative dielectric anisotropy: the effect of unsaturation in the terminal chain on thermal and electro-optical properties. Liq Cryst. 2013;40:605–615.
  • Dabrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3:443–482.
  • Dziaduszek J, Dabrowski R, Urban S, et al. Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications. Liq Cryst. 2017;44:1277–1292.
  • Gauza S, Parish A, Wu ST, et al. Physical properties of laterally fluorinated isothiocyanato phenyl-tolane single liquid crystals components and mixtures. Mol Cryst Liq Cryst. 2008;489:135–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.