198
Views
8
CrossRef citations to date
0
Altmetric
Article

Deformed lying helix transition and lasing effect in cholesteric LC layers at spatially periodic boundary conditions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 384-398 | Received 19 Jun 2019, Accepted 08 Aug 2019, Published online: 03 Sep 2019

References

  • Chilaya G. Cholesteric liquid crystals: properties and applications. Saarbrucken: Lambert Academic Publishing; 2013.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676–685.
  • Blinov LM, Bartolino R, editors. Liquid crystal microlasers. Kerala, India: Transworld Research Network; 2010.
  • Ryabchun A, Bobrovsky A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv Optical Mater. 2018;1800335:1–20.
  • Kopp VI, Zhangb Z-Q, Genacka AZ. Lasing in chiral photonic structures. Prog Quantum Electron. 2003;27:369–416.
  • Shang X, Meeus L, Cuypers D, et al. Fast switching cholesteric liquid crystal optical beam deflector with polarization independence. Sci Rep. 2017;7: Article number: 6492.
  • Il’chishin IP, Tikhonov EA, Shpak MT, et al. Stimulated emission lasing by organic dyes in a nematic liquid crystal. JETP Lett. 1976;24:303–306.
  • Palto SP, Shtykov NM, Umanskii BA, et al. Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals. J Appl Phys. 2012;112:013105.
  • Penninck L, Beeckman J, De Visschere P, et al. Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films. J Appl Phys. 2013;113:063106.
  • Belyakov VA. From liquid crystals localized modes to localized modes in photonic crystals. J Lasers Optics Photonics. 2017;4:153.
  • Cao W, Munos A, Palffy-Muhoray P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater. 2002;1:111–113.
  • Ortega J, Folcia CL, Etxebarria J. Upgrading the performance of cholesteric liquid crystal lasers: improvement margins and limitations. Materials. 2018;11(5):1–24.
  • Xiang J, Varanytsia A, Minkowski F, et al. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc Natl Acad Sci USA. 2016;113(46):12925–12928.
  • Palto SP. Lasing in liquid crystal thin films. JETP. 2006;103(3):472–479.
  • Sonoyama K, Takanishi Y, Ishikawa K, et al. Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers. Appl Phys Exp. 2008;1:032002.
  • Inoue Y, Yoshida H, Inoue K, et al. Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment. Appl Phys Exp. 2010;3:102702.
  • Kogelnik H, Shank CV. Coupled-wave theory of distributed feedback lasers. J Appl Phys. 1972;43:2327–2335.
  • Patel JS, Meyer RB. Flexoelectric electro-optics of a cholesteric liquid crystal. Phys Rev Lett. 1987;58(15):1538–1540.
  • Komitov L, Bryan-Brown GP, Wood EL, et al. Alignment of cholesteric liquid crystals using periodic anchoring. J Appl Phys. 1999;86:3508–3511.
  • Broughton B, Clarke M, Blatch A, et al. Optimized flexoelectric response in a chiral liquid-crystal phase device. J Appl Phys. 2005;98:34109.
  • Outrama BI, Elston SJ. Spontaneous and stable uniform lying helix liquid-crystal alignment. J Appl Phys. 2013;113:043103.
  • Kimura M, Endo N. Uniform lying helix of cholesteric liquid crystals aligned by means of slit coater method with electric treatment. IEICE Trans Electron. 2016;E99–C(11):1240–1243.
  • Wang C, Wang W, Lin T. A stable and switchable uniform lying helix structure in cholesteric liquid crystals. Appl Phys Lett. 2011;99:041108.
  • Tan G, Lee YH, Gou F, et al. Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals. J Appl Phys. 2017;121:173102.
  • Palto SP, Barnik MI, Geivandov AR, et al. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals. Phys Rev E. 2015;92(3):032502.
  • Palto SP, Barnik MI, Blinov LM, et al. A fast anharmonic mode in electrooptical switching of liquid crystal structures based on chiral nematics. JETP. 2010;111(3):484–494.
  • Zhi-gang Zheng, Yannian Li, Hari Krishna Bisoyi, et.al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Lett Nature. 2016;531:352–356.
  • Yu C-H, Wu P-C, Lee W. Electro-thermal formation of uniform lying helix alignment in a cholesteric liquid crystal cell. Crystals. 2019;9:183.
  • Salter PS, Carbone G, Jewell SA, et al. Unwinding of the uniform lying helix structure in cholesteric liquid crystals next to a spatially uniform aligning surface. Phys Rev E. 2009;80:041707.
  • Nys I, Beeckman J, Neyts K. Voltage-controlled formation of short pitch chiral liquid crystal structures based on high resolution surface topography. Opt Expr. 2019;27(8):11492–11502.
  • Kasyanova IV, Gorkunov MV, Artemov VV, et al. Liquid crystal metasurfaces on micropatterned polymer substrates. Opt Exp. 2018;26(16):20258–20269.
  • EMpossible. https://empossible.net/academics/emp5304/
  • Kahn FJ. Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals. Phys Rev Lett. 1970;24(5):209–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.