77
Views
3
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics in bulk and surface species of cyanophenyl alkyl benzoates with 2, 3 and 7 carbon atoms in the alkyl chain: comparison in the whole homologous series

, , , &
Pages 908-917 | Received 25 Sep 2019, Accepted 29 Oct 2019, Published online: 18 Nov 2019

References

  • Titov V, Kovshev E, Pavluchenko A, et al. Synthesis and properties of nematic liquid crystals exhibiting a positive dielectric anisotropy. J Phys Colloques. 1975;36(C1):C1-387-C1-392.
  • Ivashchenko AV, Titov VV, Kovshev EI. Liquid crystalline compounds: III on applicability of Schröder-Van Laar equations to liquid crystals mixtures. Mol Cryst Liq Cryst. 1976;33:195–200.
  • Stephens CE, Sinnadurai FN. A surface temperature limit detector using nematic liquid crystals with an application to microcircuits. J Phys E: Sci Instrum. 1974;7:641–646.
  • Karamysheva LA, Kovshev EI, Barnik MI. Mesomorphism and dielectric properties of phenyl 4 -alkylbiphenyl-4′ -carboxylates and phenyl 4 (4-alkylphenyl) cyclohexanecarboxylates. Mol Cryst Liq Cryst. 1976;37:29–34.
  • Boller A, Cereghetti M, Schadt M, et al. Synthesis and some physical properties of phenylpyrimidines. Mol Cryst Liq Cryst. 1977;42:215–231.
  • Hendriks P, de Kort K, Horstman RE, et al. Topography of AlGaAs/GaAs heterostructures using field-effect liquid crystal. Semicond Sci Technol. 1988;3:521–525.
  • Kelly SM. Some novel nematic 4-cyanophenyl esters incorporating a lateral substituent. Chem Commun. 1983;366–367.
  • Morsy MA, Oweimreen GA, Al-Tawfiq AM. Electron paramagnetic resonance and ab initio structural studies on liquid crystalline systems. J Phys Chem B. 1998;102:3684–3691.
  • Czarnecki MA, Okretic S, Siesler HW. Reorientation of nematic liquid-crystals and liquid-crystalline polymers in an electric field studied by FT-IR time-resolved spectroscopy and 2D-correlation analysis. J Phys Chem B. 1997;101:374–380.
  • Gray GW, Hird M, Lacey D, et al. The synthesis and transition temperatures of some fluoro-substituted 4-cyanophenyl and 4-cyanobiphenyl-4′-yl 4-pentyl- and 4-butoxy-benzoates. Mol Cryst Liq Cryst. 1989;172:165–189.
  • Frunza S, Schönhals A, Goering H, et al. Dynamics of cyanophenyl alkyl benzoate molecules in a surface layer adsorbed onto aerosil, Cyanophenyl hexyl benzoate. Mol Cryst Liq Cryst. 2008;495:60[412]-79[431].
  • Frunza S, Schönhals A, Frunza L, et al. Dynamics of cyanophenyl alkylbenzoate molecules in the bulk and in a surface layer adsorbed onto aerosil. Variation of the lengths of the alkyl chain. Chem Phys. 2010;372:51–60.
  • Frunza S, Frunza L, Goering H, et al. On the dynamics of surface layer in octylcyanobiphenyl-aerosil systems. Europhys Lett. 2001;56:801–807.
  • Iannacchione GS, Garland CW, Mang JT, et al. Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions. Phys Rev E. 1998;58:5966–5981.
  • Haga H, Garland CW. Effect of silica aerosil particles on liquid-crystal phase transitions. Phys Rev E. 1997;56:3044–3052.
  • Frunza S, Frunza L, Ganea CP, et al. Density of adsorbed surface species for cyanophenyl alkyl benzoates confined to Aerosil A380: development of the evaluating algorithm for attachment by two types of bonds. UPB Sci Bull Series A. 2019;81:223–236.
  • Kremer F, Schönhals A, Eds. Broadband dielectric spectroscopy. Springer-Verlag, Berlin-Heidelberg; 2003. a) p. 63f; b) p. 69f; c) p. 392; d) p.99.
  • Frunza S, Kosslick H, Schönhals A, et al. Study of the surface layer of aerosil–8CB composites by TG/DTA/DSC measurements. J Non-Cryst Solids. 2003;325:103–112.
  • Aly MM, Badr MZA, Fahmy AM, et al. Molecular rearrangements. Part XX. Thermolysis of carboxylic acid esters. Can J Chem. 1983;61:1532–1535.
  • Frunza S, Frunza L, Tintaru M, et al. Dynamics of the surface layer in cyanobiphenyl–aerosil nanocomposites with a high silica density. Liq Cryst. 2004;31:913–922.
  • Frunza L, Frunza S, Poterasu M, et al. Composites containing confined n-octyl-cyanobiphenyl: monomer and dimer species in the surface layer by in situ FTIR spectroscopy. Spectrochim Acta Part A. 2009;72:248–253.
  • Cross SNW, Rochester CNH. Infrared study of the adsorption of aromatic esters on silica immersed in carbon tetrachloride. J Chem Soc Faraday Trans. 1981;77:1027–1038.
  • Wrzalik R, Merkel K, Kocot A. Ab initio study of phenyl benzoate: structure, conformational analysis, dipole moment, IR and raman vibrational spectra. J Mol Model. 2003;9:248–258.
  • Frunza L, Frunza S, Zgura I, et al. Involvement of cyan and ester groups in surface interactions of aerosil–cyanophenyl alkyl benzoate systems with high silica density: infrared investigations. Spectrochim Acta Part A. 2010;75:1228–1235.
  • Manjuladevi V, Madhusudana NV. High pressure studies on a nematogen with highly polar molecules: evidence for a nematic-nematic transition. Curr Sci. 2003;85:1056–1061.
  • Frunza L, Frunza S, Enache I, et al. Confining effects in composites containing molecular sieves. Mol Cryst Liq Cryst. 2004;418:797–813.
  • Manaila-Maximean D, Rosu C. Influence of polarizing electric field on electrical and optical properties of PDLC films. Mol Cryst Liq Cryst. 2004;413(1):9–19.
  • Puchkovskaya GA, Reznikov YA, Yakubov AA, et al. Transformation of hydrogen bonding of a liquid crystal-aerosil system under the influence of an electric field. J Mol Struct. 1996;381:133–139.
  • Hourri A, Bose T, Thoen J. Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal. Phys Rev E. 2001;63:051702.
  • Leys J, Glorieux C, Thoen J. Confinement effects on strongly polar alkylcyanobiphenyl liquid crystals probed by dielectric spectroscopy. J Phys Condens Matter. 2008;20:244111.
  • Benguigui L. Dielectric relaxation and nematic order in liquid crystals. Phys Rev A. 1984;29:2968.
  • Diogo AC, Martins AF. Order parameter and temperature dependence of the hydrodynamic viscosities of nematic liquid crystals. J Phys. 1982;43:779–786.
  • Zeller HR. Dielectric relaxation and the glass transition in nematic liquid crystals. Phys Rev Lett. 1982;48:334–336.
  • Kityk AV, Wolff M, Knorr K, et al. Continuous paranematic-to-nematic ordering transitions of liquid crystals in tubular silica nanochannels. Phys Rev Lett. 2008;101:187801.
  • Garca-Coln LS, Del Castillo LF, Goldstein P. Theoretical basis for the Vogel-Fulcher-Tammann equation. Phys Rev B. 1989;40: 7040; Erratum Phys. Rev. B 41, 4785 (1990).
  • Rault J. Origin of the Vogel–Fulcher–Tammann law in glass-forming materials: the α–β bifurcation. J Non-Cryst Solids. 2000;271(3):177–217.
  • Ikeda M, Aniya M. Understanding the Vogel–Fulcher–Tammann law in terms of the bond strength–coordination number fluctuation model. J Non-Cryst Solids. 2013;371–372:53–57.
  • Frunza S, Frunza L, Ganea CP, et al. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: density of adsorbed surface species. Eur Phys J Plus. 2016;131:27–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.