129
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Reflective blue phase liquid crystal display with triangular dielectric layer

, , , &
Pages 1019-1024 | Received 04 Oct 2019, Accepted 02 Dec 2019, Published online: 09 Dec 2019

References

  • Kurogane H, Doi K, Nishihata T, et al. Reflective AMLCD for projection displays. SID Int Symp Digest Tech Papers. 2012;29:33–36.
  • Cakmakci O, Rolland J. Head-worn displays: a review. J Disp Technol. 2006;2:199–216.
  • Armitage D, Underwood I, Wu ST. Introduction to microdisplays. Wiley, 2006;307–336.
  • Schadt M, Helfrich WJ. Voltage dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18:127–128.
  • Smet HD, Cuypers D, André VC, et al. Design, fabrication and evaluation of a high-performance XGA VAN-LCOS microdisplay. Displays. 2002;23:89–98.
  • Wu ST, Wu CS. Mixed-mode twisted nematic liquid crystal cells for reflective displays. Appl Phys Lett. 1996;68:1455–1457.
  • Birch M, Daniel K, Yates C, et al. SXGA resolution FLC microdisplays. SID Symp Digest Tech Papers. 2002;31:954–957.
  • Wilkinson TD. Ferroelectric liquid crystal over silicon devices. Liq Cryst Today. 2012;21:34–41.
  • Srivastava AK, Chigrinov VG, Kwok HS. Ferroelectric liquid crystals: excellent tool for modern displays and photonics. J Soc Inf Disp. 2015;23:253–272.
  • Chen H, Peng F, Hu M, et al. Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display. Liq Cryst. 2015;42:1730–1737.
  • Wu ST. Nematic liquid crystal modulator with response time less than 100μs at room temperature. Appl Phys Lett. 1990;57:986–988.
  • Gou F, Chen H, Li MC, et al. Submillisecond-response liquid crystal for high-resolution virtual reality displays. Opt Express. 2017;25:7984–7997.
  • Huang Y, Chen H, Tan G, et al. Optimized blue-phase liquid crystal for field-sequential-color displays. Opt Mater Express. 2017;7:254–257.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Haseba Y, Kikuchi H, Nagamura T, et al. Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range. Adv Mater. 2005;17:2311–2315.
  • Chu F, Dou H, Song YL, et al. A transflective blue-phase liquid crystal display with alternate electrodes. Liq Cryst. 2017;44:1316–1320.
  • Tian LL, Chu F, Dou H, et al. A transflective polymer-stabilised blue-phase liquid display with partitioned wall-shaped electrodes. Liq Cryst. 2018;45:1366–5855.
  • Chu F, Dou H, Tian LL, et al. Polarization-independent blue-phase liquid crystal microlens array with different dielectric layer. Liq Cryst. 2019;46:1273–1279.
  • Tian LL, Chu F, Dou H, et al. Transflective blue-phase liquid crystal display with dielectric protrusion. Liq Cryst. 2019;46:1353–1358.
  • Chu F, Dou H, Li GP, et al. A polarization-independent blue-phase liquid crystal lens array using gradient-electrodes. Liq Cryst. 2018;45:715–720.
  • Rao L, He S, Wu ST. Blue-Phase liquid crystals for reflective projection displays. J Disp Technol. 2012;8:555–557.
  • He S, Lee JH, Cheng HC, et al. Fast response blue-phase liquid crystal for color-sequential projection displays. J Disp Technol. 2012;8:352–356.
  • Jiao M, Li Y, Wu ST. Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes. Appl Phys Lett. 2010;96:011102.
  • Guo YQ, Fu MZ, Ren YX, et al. Low-voltage blue-phase liquid crystal display with single-penetration electrodes. Liq Cryst. 2017;44:2321–2326.
  • Kim M, Kim MS, Kang BG, et al. Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays. J Appl Phys. 2009;42:235502.
  • Liang D, Wang QH. Liquid crystal microlens array using double lenticular electrodes. J Disp Technol. 2013;9:814–818.
  • Cha J, Kim J, Ryu SK, et al. A highly efficient 3D micromixer using soft PDMS bonding. J Micromech Microeng. 2006;16:1778–1782.
  • Chang SI, Yoon JB. Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method. Opt Express. 2005;12(25):6366–6371.
  • Yeh P. Extended Jones matrix method. J Opt Soc Am. 1982;72:507–513.
  • Lien A. A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays. Liq Cryst. 1997;22:171–175.
  • Lien A. Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence. Appl Phys Lett. 1990;57:2767.
  • Ge Z, Zhu X, Wu ST, et al. Reflective liquid-crystal displays with asymmetric incident and exit angles. J Opt Soc Am A. 2005;22:966–977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.