264
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Polarisation-independent liquid crystal lens array with additional dielectric films over self-aligned dual hole-patterned electrodes

ORCID Icon, , &
Pages 1312-1320 | Received 23 Sep 2019, Accepted 29 Dec 2019, Published online: 08 Jan 2020

References

  • Sato S. Applications of liquid crystals to variable-focusing lenses. Opt Rev. 1999;6:471–485.
  • Lin HC, Chen MS, Lin YH. A review of electrically tunable focusing liquid crystal lenses. Trans Electr Electron Mater. 2011;12(6):234–240.
  • Hsu CJ, Sheu CR. Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals. Opt Express. 2012;20:4738–4746.
  • Lin HC, Lin YH. A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens. Appl Phys Lett. 2010;97:063505.
  • Lin HC, Lin YH. An electrically tunable focusing pico-projector adopting a liquid crystal lens. Jpn J Appl Phys. 2010;49:102502.
  • Ye M, Wang B, Kawamura M, et al. Image formation using liquid crystal lens. Jpn J Appl Phys. 2007;46:6776–6777.
  • Liang D, Luo JY, Zhao WX, et al. 2D/3D Switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens. J Display Technol. 2012;8:609–612.
  • Ye M, Wang B, Takahashi T, et al. Properties of variable-focus liquid crystal lens and its application in focusing system. Opt Rev. 2007;14:173–175.
  • Lin YH, Chen MS, Lin HC. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio. Opt Express. 2011;19:4714–4721.
  • Kawamura M, Ye M, Sato S. Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties. Jpn J Appl Phys. 2005;44:6098–6100.
  • Kawamura M, Ye M, Sato S. Optical tweezers system by using a liquid crystal optical device. Mol Cryst Liq Cryst. 2007;478:891–898.
  • Hsu YH, Lu WY, Wu TT, et al. Switchable aperture of liquid crystal lens array fabricated with a hole-array patterned metal foil spacer. Mol Cryst Liq Cryst. 2015;613:143–148.
  • Nose T, Sato S. A liquid crystal microlens obtained with a non-uniform electric field. Liq Cryst. 1989;5:1425–1433.
  • Sato S. Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys. 1979;18:1679–1684.
  • Algorri JF, Urruchi V, Bennis N, et al. Integral imaging capture system with tunable field of view based on liquid crystal microlenses. IEEE Photon Technol Lett. 2016;28:1854–1857.
  • Hassanfiroozi A, Huang YP, Javidi B, et al. Hexagonal liquid crystal lens array for 3D endoscopy. Opt Express. 2015;23:971–981.
  • Lia R, Chua F, Doua H, et al. A blue-phase liquid crystal lens array based on dual square ring-patterned electrodes. Liq Cryst. 2019;46:1266–1272.
  • Dou H, Chu F, Song YL, et al. A multifunctional blue phase liquid crystal lens based on multi-electrode structure. Liq Cryst. 2018;45:491–497.
  • Chu F, Dou H, Li GP, et al. A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes. Liq Cryst. 2018;45:715–720.
  • Cui JP, Fan HX, Wang QH. A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure. Liq Cryst. 2017;44:643–647.
  • Kim SU, Na JH, Kim C, et al. Design and fabrication of liquid crystal-based lenses. Liq Cryst. 2017;44:2121–2132.
  • Lee CT, Li Y, Lin HY, et al. Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal. Opt Express. 2011;19:17402–17407.
  • Chu F, Dou H, Tian LL, et al. Polarisation-independent blue-phase liquid crystal microlens array with different dielectric layer. Liq Cryst. 2019;46:1273–1279.
  • Li Y, Liu Y, Li Q, et al. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film. Appl Opt. 2012;51:2568–2572.
  • Hsu YH, Chen BY, Sheu CR. Improvement of hole-patterned electrode liquid crystal lens by coplanar inner ring electrode. IEEE Photon Technol Lett. 2019;31:1627–1630.
  • Ye M, Wang B, Sato S. Polarization-independent liquid crystal lens with four liquid crystal layers. IEEE Photon Technol Lett. 2006;18:505–507.
  • Lin YH, Chen HS. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt Express. 2013;21:9428–9436.
  • Lin YH, Chen HS, Lin HC, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2010;96:113505.
  • Hsu CJ, Liao CH, Chen BL, et al. Polarization-insensitive liquid crystal microlens array with dual focal modes. Opt Express. 2014;22:25925–25930.
  • Ye M, Wang B, Sato S. Liquid-crystal lens with a focal length that is variable in a wide range. Appl Opt. 2004;43:6407–6412.
  • Kuo CH, Chien WC, Hsieh CT, et al. Influence of pretilt angle on disclination lines of liquid crystal lens. Appl Opt. 2012;51:4269–4274.
  • Pishnyak O, Sato S, Lavrentovich OD. Electrically tunable lens based on a dual-frequency nematic liquid crystal. Appl Opt. 2006;45:4576–4582.
  • Hsu CJ, Sheu CR. Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization. Opt Express. 2011;19:14999–15008.
  • Ye M, Sato S. Optical properties of liquid crystal lens of any size. Jpn J Appl Phys. 2002;41:L571–L573.
  • Zhao X, Liu C, Zhang D, et al. Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab. Appl Opt. 2012;51:3024–3030.
  • Chien CY, Li CH, Sheu CR. An electrically tunable liquid crystal lens with coaxial bi-focus and single focus switching modes. Crystals. 2017;7:209.
  • Zhao X, Zhang D, Luo Y, et al. Numerical analysis and design of patterned electrode liquid crystal microlens array with dielectric slab. Opt Laser Technol. 2012;44:1834–1839.
  • Scharf T, Kipfer P, Bouvier M, et al. Diffraction limited liquid crystal microlenses with planar alignment. Jpn J Appl Phys. 2000;39:6629–6636.
  • Kao YY, Chao PC, Hsueh CW. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. Opt Express. 2010;18(18):18506–18518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.