366
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Electrically tunable and reversible selective reflection due to the transition between simple cubic and tetragonal blue-phase liquid crystals

&
Pages 1330-1337 | Received 12 Nov 2019, Accepted 29 Dec 2019, Published online: 03 Jan 2020

References

  • Castles F, Morris SM, Hung JM, et al. Stretchable liquid-crystal blue-phase gels. Nat Mater. 2014;13:817.
  • Petriashvili G, Chanishvili A. Liquid crystal blue phase interconversions based real-time thermal imaging device. Opt Express. 2019;27:13526.
  • Gleeson HF, Coles HJ. Dynamic properties of blue-phase mixtures. Liq Cryst. 1989;5:917.
  • Kitzerow HS, Crooker P, Kwok SL. Dynamic of blue-phase selective reflection in an electric field. Phys Rev A. 1990;42:3442.
  • Chen H-Y, Chiou J-Y, Yang K-X. Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field. Appl Phys Lett. 2011;99:181119.
  • Crooker P. Polarization of multiply scattered Bragg reflections form chiral cubic structures. Phys Rev A. 1985;31:1010.
  • Johnson DL, Flack JH, Crooker PP. Structure and properties of the cholesteric blue phases. Phys Rev Lett. 1980;45:641.
  • Choi H, Higuchi H, Kikuchi H. Fast electro-optic switching in liquid crystal blue phase II. Appl Phys Lett. 2011;98:131905.
  • Shibayama S, Higuchi H, Okumura Y, et al. Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices. Adv Funct Mater. 2013;23:2387.
  • Yoshida H, Yabu S, Tone H, et al. Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy. Appl Phys Express. 2013;6:4.
  • Wang M, Zou C, Sun J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity. Adv Funct Mat. 2017;27:1702261.
  • Wang M, Zou C, Li C, et al. Bias‐polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application. Adv Optical Mater. 2018;6:1800409.
  • Cao W, Munoz A, Palffy-Muhoray P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater. 2002;1:111.
  • Kim S-U, Lee S-H, Lee I-H, et al. Generation of intensity-tunable structural color from helical photonic crystals for full color reflective-type display. Opt Express. 2018;26:13561.
  • Xing YF, Guo ZB, Li Q. Reflective blue phase liquid crystal displays with double-side concave-curved electrodes. Liq Cryst. 2018;45:507.
  • Tian LL, Chu F, Dou H, et al. Transflective blue-phase liquid crystal display with dielectric protrusion. Liq Cryst. 2019;46:1353.
  • Li GP, Dou H, Song YL, et al. Low voltage and high transmittance transflective blue-phase liquid crystal display with opposite polar electrodes. Liq Cryst. 2018;45:410.
  • Song YL, Li GP, Dou H, et al. Transflective blue-phase liquid crystal display with polar opposite electrodes. Liq Cryst. 2018;45:1535.
  • Chen N-R, Ho JT. Electric-field-induced phase diagrams of blue-phase systems. Phys Rev A. 1987;35:4886.
  • Lu S-Y, Chien L-C. Electrically switched color with polymer-stabilized blue-phase liquid crystals. Opt Lett. 2010;35:562.
  • Chen C-W, Li -C-C, Jau H-C, et al. Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals. ACS Photonics. 2015;2:1524.
  • Sridurai V, Mathwes M, Yelamaggad CV, et al. Electrically tunable soft photonic gel formed by blue phase liquid crystal for switchable color-reflecting mirror. ACS Appl Mater Interfaces. 2017;9:39569.
  • Sharadhi N, Vimala S, Nurjahan K, et al. Tuning of Photonic band gap via combined effect of electric and optical fields in a blue phase liquid crystal composite. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1640905
  • Pieranski P, Cladis PE. Field-induced tetragonal blue phase (BP X). Phys Rev A. 1987;35:355.
  • Cladis PE, Garel T, Pieranski P. Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases. Phys Rev Lett. 1986;57:2841.
  • Chen CW, Jau HC, Wang CT, et al. Random lasing in blue phase liquid crystals. Opt Express. 2012;20:23978.
  • Park KW, Gim MJ, Kim S, et al. Liquid-crystalline blue phase II system comprising a bent-core molecules with a wide stable temperature range. ACS Appl Mater Interfaces. 2013;5:8025.
  • Chen H-Y, Tu H-Y. Optical polarization states of a liquid-crystal blue phase II. OSA Contin. 2019;2:478.
  • Chen CW, Hou CT, Li CC, et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat Commun. 2017;8:727.
  • Yan J, Lin J, Li Q, et al. Influence of long-lasting electric field on the formation of monodomain polymer stabilized blue phase liquid crystals. J Appl Phys. 2019;125:024501.
  • Kawata Y, Yoshida H, Tanaka S, et al. Anisotropy of the electro-optic Kerr effect in polymer-stabilized blue phases. Phys Rev E. 2015;91:022503.
  • Chen H-Y, Hsieh Y-C. Lattice structure in liquid-crystal blue phase with various chiral concentrations. Liq Cryst. 2016;42:1472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.