249
Views
10
CrossRef citations to date
0
Altmetric
Article

Colour generation for optically driving liquid crystal display

, , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1729-1734 | Received 12 Sep 2019, Accepted 22 Jan 2020, Published online: 17 Feb 2020

References

  • Murauski A, Chigrinov V, LI X, et al. Optically rewritable LC display with a high contrast and long life time. IDW’05. 2005;1:131–132.
  • Li X, Au PT, Xu P, et al. Flexible photoaligned optically rewritable LC display. SID’06. 2006;37:783–785.
  • Muravsky A, Murauski A, Li X, et al. Optical rewritable liquid crystal alignment technology. JSID. 2007;15:267–273.
  • Muravsky A, Murauski A, Chigrinov V, et al. New properties and applications of rewritable azo-dye photoalignment. J Sid. 2008;16:927–931.
  • Muravsky A, Murauski A, Chigrinov V, et al. Optical rewritable electronic paper with fluorescent dye doped liquid crystal. SID’08. 2008;39:915–918.
  • Muravsky A, Murauski A, Chigrinov V, et al. Light printing of grayscale pixel images on optical rewritable electronic paper. Jpn J Appl Phys. 2008;247:6347–6353.
  • Muravsky A, Murauski A, Chigrinov V, et al. Optical rewritable electronic paper. IEICE Trans Electron. 2008;91:1576–1580.
  • Yu Q, Murauski A, Du T, et al. Light printer for optical rewritable electronic paper. SID’09. 2009;40:1184–1186.
  • Wang L, Sun J, Liu H, et al. Increasing the rewriting speed of ORW E-paper by electric field. Liq Cryst. 2017;45(4):553–560.
  • Sun J, Liu Y, Liu H, et al. Increasing rewriting speed of optically driving liquid crystal display by process optimisation. Liq Cryst. 2019;46(1):151–157.
  • Sun J, Ren L, Deng K, et al. Greyscale generation for optically driving liquid crystal display. Liq Cryst. 2019;46(9):1340–1344.
  • Hu W, Srivastava A, Xu F, et al. Liquid crystal gratings based on alternate TN and PA photoalignment. Opt Express. 2012;20(15):5384–5391.
  • Sun JT, Ren LH, Deng KL, et al. Greyscale generation for optically driving liquid crystal display. Liq Cryst. 2019;46(9):1340–1344.
  • Zhang W, Sun JT, Srivastava AK, et al. 3-D gray scale images generation on optically rewritable electronic paper. SID Symp Dig Tech Pap. 2015;46:40.
  • Zhang Y, Sun J, Liu Y 1, et al. A flexible optically re-writable color liquid crystal display. Appl Phys Lett. 2018;112:131902.
  • Sun JT, Chigrinov VG. Effect of azodye layer on rewriting speed of optical rewritable e-paper. Mol Cryst Liq Cryst. 2012;561:1.
  • Chigrinov VG, Kozenkov VM, Kwok HS. Photoalignment of liquid crystalline materials: physics and applications. London (UK): Wiley; 2008. p. 248.
  • Saito M, Ota N, Tsubokura Y, et al. Rewritable grating made of metamaterial with nanostructure. SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference; 2007.p. 466–469, Salvador, Brazil.
  • Sun JT, Srivastava AK, Wang L, et al. Optically tunable and rewritable diffraction grating with photoaligned liquid crystals. Opt Lett. 2013;38(13):2342–2344.
  • Ma Y, Sun JT, Srivastava AK, et al. Optically rewritable ferroelectric liquid-crystal grating. Europhys Lett. 2013;102:24005.
  • Chen P, Ma LL, Duan W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv Mater. 2018;30(10):1705865.
  • Ge SJ, Chen P, Shen ZX, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt Express 2017. 2017;25(11):12349–12356.
  • Liu Y, Lee JH, Seo DS, et al. Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage. Appl Phys Lett. 2016;109(10):101901.
  • Liu Y, Lee JH, Seo DS. Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment. Opt Express. 2016;24(15):17424–17432.
  • Liu Y, Park HG, Lee JH, et al. Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT: PSS composite layers. Opt Express. 2015;23(26):34071–34081.
  • Liu Y, Park HG, Lee JH, et al. Homogeneous liquid crystal alignment on ion beam-induced Y2Sn2O7 layers. IEEE Electron Device Lett. 2015;36(4):363–365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.