211
Views
7
CrossRef citations to date
0
Altmetric
Article

In-plane switching liquid crystal cells using patterned printing electrodes and fine groove structures

&
Pages 1735-1743 | Received 10 Dec 2019, Accepted 25 Jan 2020, Published online: 05 Feb 2020

References

  • Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18:127–129.
  • Scheffer TJ, Nehring J. A new, highly multiplexable liquid crystal display. Appl Phys Lett. 1984;45:1021–1023.
  • Soref RA. Field effects in nematic liquid crystals obtained with interdigital electrodes. J Appl Phys. 1974;45:5466–5468.
  • Schiekel MF, Fahrenschon K. Deformation of nematic liquid crystals with vertical orientation in electrical fields. Appl Phys Lett. 1971;19:391–393.
  • Mori K, Ning T, Ichikawa M, et al. Organic light-emitting devices patterned by screen-printing. Jpn J Appl Phys. 2000;39:L942–L944.
  • Takeda T. Development of OLED panel using gravure printing technology. J Surf Finishing Soc Japan. 2009;60: 426–430. Japanese.
  • Matsubara R, Harada Y, Hatta K, et al. Printing technologies for organic TFT array for electronic paper. SID 2012 Dig Tech Pap. 2012;43:419–421.
  • Hebner TR, Wu CC, Lu MH, et al. Ink-jet printing of doped polymers for organic light emitting devices. Appl Phys Lett. 1998;72:519–521.
  • Bharathan J, Yang Y. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl Phys Lett. 1998;72:2660–2662.
  • Yoshimori Y, Naka S, Shibata M, et al. Ink-jet printed organic electroluminescent devices. Proc Int’l Display Res Conf.’98; 1998 Sept 28–Oct 1; Seoul, Korea: Society for Information Display & the Korean Physical Society; 1998. p.213–216.
  • Nüesch F, Li T, Rothberg LJ. Patterned surface dipole layers for high-contrast electroluminescent displays. Appl Phys Lett. 1999;75:1799–1801.
  • Oka S, Sasaki T, Tamaru T, et al. Optical compensation method for wide viewing angle IPS LCD using a plastic substrate. SID 2016 Dig Tech Pap. 2016;47:87–90.
  • Kimura M, Honda K, Yodogawa S, et al. Flexible LCDs fabricated with a slit coater: not requiring an alignment film. J Soc Inf Disp. 2012;20:633–639.
  • Chou SY, Krauss PR, Renstrom PJ. Imprint of sub‐25 nm vias and trenches in polymers. Appl Phys Lett. 1995;67:3114–3116.
  • Kagajyo T, Fujibayashi K, Shimamura T, et al. Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method. Jpn J Appl Phys. 2005;44:578–581.
  • Takahashi H, Sakamoto T, Okada H. Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography. J Appl Phys. 2010;108: 113529-1-5.
  • Haruna K, Okada H. Alignment of liquid crystals with 200 nm-sized V-shaped groove structure fabricated by nano-imprint lithography. J Mol Liq. 2019;286:110830-1-6.
  • Sato H, Fujikake H, Iino Y, et al. Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks. Jpn J Appl Phys. 2002;41:5302–5306.
  • Fujisaki Y, Sato H, Yamamoto T, et al. Flexible color LCD panel driven by low-voltage-operation organic TFT. J Soc Inf Disp. 2007;15:501–506.
  • Chen J, Liu CT. Technology advances in flexible displays and substrates, technology advances in flexible displays and substrates. IEEE Access. 2013;1:150–158.
  • Matsuoka K, Kina O, Koutake M, et al. High resolution 200ppi LCD driven by entirely printed organic TFT. Proc Int’l Display Workshop ’09; 2009 Dec 9–11; Miyazaki, Japan: Inst. Image Information and Television Eng. and Soc. Information Display; 2009. p.717–720.
  • Schneider T, Nicholson F, Khan A, et al. Flexible encapsulated cholesteric LCDs by polymerization induced phase separation. SID 2005 Dig Tech Pap. 2005;36:1568–1571.
  • Khan A, Schneider T, Montbach E, et al. Recent progress in flexible color reflective cholesteric displays. J Soc Inf Disp. 2008;16:245–250.
  • Jang S-J, Kim J-H, Bae J-H, et al. Tight bonding of two plastic substrates for flexible LCDs. SID 2007 Dig Tech Pap. 2007;38:653–656.
  • Kim Y-T, Hwang S, Hong J-H, et al. Alignment layerless flexible liquid crystal display fabricated by an imprinting technique at ambient temperature. Appl Phys Lett. 2006;89:173506-1-3.
  • Vogels JPA, Klink SI, Penterman R, et al. Robust flexible LCDs with paintable technology. SID 2004 Dig Tech Pap. 2004;35:767–769.
  • Sato A, Ishinabe T, Fujikake H. Flexible in-plane-switching liquid crystal display using stretched polycarbonate substrates with optical positive A-plate. IEICE Trans Electron. 2015;E98–C:1039–1042.
  • Minami D, Shibata Y, Ishinabe T, et al. Transfer fabrication of liquid crystal devices with microgroove and wall structure on plastic substrate for flexible in-plane switching liquid crystal displays. ITE Trans MTA. 2018;6:274–279.
  • Kiefer R, Weber B, Windscheid F, et al. In-plane switching of nematic liquid crystals. Proc. Japan Display’92; 1992 Oct 12–14; Hiroshima, Japan: Inst. Image Information and Television Eng. and Soc. Information Display; 1992. p. 547–550.
  • Oh-e M, Kondo K. Electro-optical characteristics and switching behavior of the in-plane switching mode. Appl Phys Lett. 1995;67:3895–3897.
  • Oh-e M, Kondo K. Response mechanism of nematic liquid crystals using the in-plane switching mode. Appl Phys Lett. 1996;69:623–625.
  • Choi YM, Lee ES, Lee TM, et al. Optimization of a reverse-offset printing process and its application to a metal mesh touch screen sensor. Microelectron Eng. 2015;134:1–6.
  • Gooch CH, Tarry HA. The optical properties of twisted nematic liquid crystal structures with twist angle ≤90°. J Phys D: Appl Phys. 1975;8:1575–1584.
  • Lee SH, Lee SL, Kim HY, Transmittance, wide-viewing-angle nematic liquid crystal display controlled by fringe-field switching, Proc Int’l Display Res Conf.’98; 1998 Sept 28–Oct 1; Seoul, Korea: Society for Information Display & the Korean Physical Society, 1998; p.371–374.
  • Ono K, Mori I, Oke R, et al. Novel IPS-Pro technology for FHD LCD-TVs driven at 120 Hz. Proc Int’l Display Workshop’ 07; 2007 Dec 5–7; Sapporo, Japan: Inst. Image Information and Television Eng. and Soc. Information Display; p. 67–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.