430
Views
5
CrossRef citations to date
0
Altmetric
Article

Chiral polymer network stabilised blue phase liquid crystals

, , , , , , & show all
Pages 2184-2193 | Received 04 Sep 2019, Accepted 24 Feb 2020, Published online: 29 Jul 2020

References

  • Meiboom S, Sethna JP, Anderson PW, et al. Theory of the blue phase of cholesteric liquid crystals. Phys Rev Lett. 1981;46(18):1216–1219.
  • Memmer R. Computer simulation of chiral liquid crystal phases VIII. Blue phases of the chiral Gay-Berne fluid. Liqu Crys. 2000;27(4):533–546.
  • Chen KM, Gauza S, Xianyu H, et al. Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. J Disp Technol. 2010;6:49–51.
  • Harbers G, Hoelen C. Hoelen, high performance LCD backlighting using high intensity red, green and blue light emitting diodes. Proc SID Digest. 2001;32:702–705.
  • Kikuchi H, Yokota M, Hisakado Y, et al. polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Kim M, Kang BG, Kim MS, et al. Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field. Curr Appl Phys. 2010;10:118.
  • Yan J, Li Y, Wu ST. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. Opt Lett. 2011;36:1404.
  • Lu SY, Chien LC. Electrically switched color with polymer-stabilized blue-phase liquid crystals. Opt Lett. 2010;35:562.
  • Zhu JL, Lu JG, Qiang J, et al. 1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal. J Appl Phys. 2012;111:033101.
  • Cui HQ, Ye ZC, Hu W, et al. Single cell gap polymer-stabilized blue-phase transflective LCDs using internal nanowire grid polarizer. J Inf Disp. 2011;12:115.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676.
  • Yokoyama S, Mashiko S, Kikuchi H, et al. Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv Mater. 2006;18:48.
  • Iwamochi H, Yoshizawa A. Electro-optical switching in blue phases induced using a binary system of a T- shaped nematic liquid crystal and a chiral compound. Appl Phys Exp. 2008;1(18):111801.
  • Chen KM, Gauza S, Xianyu H, et al. Hysteresis effects in blue-phase liquid crystals. J Disp Technol. 2010;6(8):318–322.
  • Chen Y, Xu D, Wu ST, et al. A low voltage and sub-millisecond response polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2013;102:141116.
  • Tu CD, Lin CL, Wu ST. Driving scheme using boot-strapping method for blue-phase LCD. J Disp Technol. 2013;9:3–6.
  • Hsieh PJ, Chen H. Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers. Liq Cryst. 2015;42:1–6.
  • Hirose T, Yoshizawa A. Comparison of electro-optical switching between polymer-stabilised cubic and amorphous blue phases. Liq Cryst. 2015;42:1–8.
  • Kim M, Kim MS, Kang BG, et al. Phys. D: electrodes for reducing the operation voltage of polymer- stabilized blue phase liquid crystal displays. J Appl Phys. 2009;42(23):235502.
  • Jiao M, Li Y, Wu ST. Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes. Appl Phys Lett. 2010;96(1):011102.
  • Cheng HC, Yan J, Ishinabe T, et al. Vertical field switching for blue-phase liquid crystal devices. Appl Phys Lett. 2011;98(26):261102.
  • Yang S, Feng X, Wang L, et al. Graphene-based nanosheets with a sandwich structure. Chem Int Ed. 2010;49(28):4795–4799.
  • Hsieh JL, Choi WK. Step-shaped electrode for low-voltage and high-optical-efficiency blue-phase transflective liquid crystal displays. Liq Cryst. 2019;46:1043–1051.
  • Chan BH, Choi WK. Three-dimensional corrugated electrode structure for low-voltage high-transmittance blue-phase liquid crystal displays. Liq Cryst. 2019;46:806–815.
  • Li GP, Dou H, Chu F, et al. Low voltage and high transmittance transflective blue-phase liquid crystal display with opposite polar electrodes. Liq Cryst. 2018;45:410–414.
  • Tian LL, Chu F, Dou H, et al. A transflective polymer-stabilised blue-phase liquid display with partitioned wall-shaped electrodes. Liq Cryst. 2018;45:1259–1263.
  • Rao L, Yan J, Wu ST, et al. Appl. A large Kerr constant polymer-stabilized blue phase liquid crystal. Phys Lett. 2011;98(8):081109.
  • Zhu JL, Ni SB, Song Y, et al. Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluents. Appl Phys Lett. 2013;102(7):071104.
  • Rao L, Yan J, Wu ST, et al. Low voltage blue- phase liquid crystal displays. Appl Phys Lett. 2009;95(23):231101.
  • Ni S, Li H, Li S, et al. Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets. J Mater Chem C. 2014;2:1730–1735.
  • Zhu DP, Chen BH, Chen Z, et al. Low-voltage polymer-stabilised blue-phase liquid crystals with oleic acid (OA)-modified LaF3 nanoparticles. Liq Cryst. 2018;45:1654–1660.
  • Avci N. The influence of diluter system on polymer-stabilised blue-phase liquid crystals. Liq Cryst. 2018;45:459–467.
  • Sato M, Yoshizawa A. Electro-optical switching in a blue phase III exhibited by a chiral liquid crystal oligomer. Adv Mater. 2007;19:4145–4148.
  • Ramesh M. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer. J Phys D Appl Phys. 2018;51:185103.
  • Yoshizawa A. Material design for blue phase liquid crystals and their electro-optical effects. RSC Adv. 2013;3:25475–25497.
  • Jayalakshmi V, Wood T, Basu R, et al. Probing the pore structure of a chiral periodic mesoporous organosilica using liquid crystals. J Mater Chem. 2012;22:15255–15261.
  • Li JW, Du WS, Gao AA, et al. Enlarging the Kerr constant of polymer-stabilised blue phases with a novel chiral monomer. Liq Cryst. 2016;43(7):937–943.
  • Gerber PR. Electro-optical effects of a small-pitch blue-phase system. Mol Cryst Liq Cryst. 1985;116(3–4):197–206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.