409
Views
9
CrossRef citations to date
0
Altmetric
Article

Accurate determination on the pre-tilt angle of liquid crystal cell by combining optical and electrical measurement

, , , , , , , , & show all
Pages 15-22 | Received 10 Mar 2020, Accepted 25 Apr 2020, Published online: 13 May 2020

References

  • Wang LJ. Flat display technology foundation. Beijing: Peking University; 2013.
  • Fan F, Srivastava AK, Chigrinov VG, et al. Switchable liquid crystal grating with sub millisecond response. Appl Phys Lett. 2012;100(11):111105.
  • Chamoli SK. Long period grating in a liquid crystal waveguide. Optik. 2020;201:163482.
  • Liu LJ, Kong XB, Liu YQ, et al. Electrically tunable dual-wavelength organic laser based on holographic polymer dispersed liquid crystal grating. Org Electron. 2019;74:161–165.
  • Lu YQ, Hu W, Srivastava AK, et al. Fabrication of liquid crystal gratings based on photoalignment technology. Proc SPIE. 2013;8642:86420G.
  • Jau HC, Lin TH, Chen YY, et al. Direction switching and beam steering of cholesteric liquid crystal gratings. Appl Phys Lett. 2012;100(13):131909.
  • Fuh AY, Lin TH, Chen YY, et al. Optical control of the rotation of cholesteric liquid crystal gratings. Opt Express. 2019;27(8):10806–10812.
  • Saghaei T, Feiz MS, Amjadi A. Optical spatial phase retarder modulator by a rotating freely suspended LC film. Opt Commun. 2016;380:442–445.
  • Tsai CC, Liao KY, Chou C. TN-LC cells as an elliptical phase retarder by heterodyne interferometric ellipsometry. Quantum Electron Laser Sci Conf. 2005;3:1582–1584.
  • Minko AA, Timofeev SN, Yakovenko SY, et al. Development of LC-based achromatic phase retarders with broad viewing angle. Proc SPIE. 1998;3318:390–393.
  • Hu CG, Hao W, Huo SC, et al. Rapid reflectance difference microscopy based on liquid crystal variable retarder. J Vac Sci Technol B. 2019;37(5):050604.
  • Hu CG, Xie PF, Huo SC, et al. A liquid crystal variable retarder-based reflectance difference spectrometer for fast, high precision spectroscopic measurements. Thin Solid Films. 2014;571(3):543–547.
  • Zhang S, Chen C, Jiang H, et al. Dynamic characteristics of nematic liquid crystal variable retarders investigated by a high-speed polarimetry. J Opt. 2019;21(6):065605.
  • Bueno JM. Polarimetry using liquid-crystal variable retarders: theory and calibration. J Opt A: Pure Appl Opt. 2000;2(3):216–222.
  • Yang FZ, Sambles JR. Microwave liquid crystal wavelength selector. Appl Phys Lett. 2001;79(22):3717–3719.
  • Yang FZ, Sambles JR. Microwave liquid-crystal variable phase grating. Appl Phys Lett. 2004;85(11):2041–2043.
  • Karwin CM, Livesey KL. Liquid crystal phase shifters with a twist. Appl Phys Lett. 2013;103(6):063508.
  • Tseng MC, Fan F, Lee CY, et al. Tunable lens by spatially varying liquid crystal pretilt angles. J Appl Phys. 2011;109(8):083109.
  • Yang DK, Wu ST. Fundamentals of liquid crystal devices. Chichester: John Wiley & Sons, Ltd.; 2014.
  • Tseng MC, Lee CY, Li YW, et al. Study of stacked alignment layers on a single substrate with spatial liquid crystal pretilt angles and its applications. SID Symp Dig Tech Pap. 2012;41(1):1731–1734.
  • Arafune R, Sakamoto K, Ushioda S. Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals. Phys Rev E. 1998;58(5):5914–5918.
  • Lee JH, Won J, Jeong HC, et al. Physicochemical analysis of ion beam-induced surface modifications on polyethylene glycol films for liquid crystal alignment. Liq Cryst. 2019;46(12):1799–1807.
  • Lee JH, Kim EM, Heo GS, et al. Liquid crystal aligning capabilities on surface-reformed indium-doped zinc oxide films via ion-beam exposure. Liq Cryst. 2018;45(8):1137–1146.
  • Dubtsov AV, Pasechnik SV, Kiselev AD, et al. Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates. Phys Rev E. 2010;82(1):011702.
  • Mi XD, Xu M, Yang DK, et al. Effects of pretilt angle on electro-optical properties of π-cell LCDs. SID Symp Dig Tech Pap. 1999;30(1):24–27.
  • Valyukh S, Chigrinov V, Kwok HS. On liquid crystal diffractive optical elements utilizing inhomogeneous alignment. Opt Express. 2012;20(14):15209–15221.
  • Oton E, Lopez-Andres S, Carrasco-Vela C. Dynamics and electro-optics of vertically aligned nematics with induced pretilt on SiOx. J Display Technol. 2010;6(7):263–268.
  • Galin IF, Konshina EA. Pretilt angle effect on response time of dual frequency liquid crystal. Mol Cryst Liq Cryst. 2012;553(1):21–27.
  • Sun YB, Ma HM, Li ZG, et al. Pretilt angle effects on critical voltage and dynamic response of pi cell. Appl Phys Lett. 2007;90(9):091103.
  • Nie XY, Xianyu HQ, Lu RB, et al. Pretilt angle effects on liquid crystal response time. J Display Technol. 2007;3(3):280–283.
  • Oh SW, Lee DJ, Park MK, et al. Enhancement of viewing angle properties of a single-domain fringe-field switching mode using zero pretilt alignment. J Phys D: Appl Phys. 2015;48(40):405502.
  • Aerle NAJMV. A novel multi-domain wide-viewing angle liquid crystal display. Jpn J Appl Phys. 1995;34 Part 2(11A):L1472–L1474.
  • Beeckman J, Neyts K, Vanbrabant PJM. Liquid-crystal photonic applications. Opt Eng. 2011;50(8):2797–2799.
  • Karetnikova AA, Amosovab LP, Vakulinb DA, et al. Determination of the director pretilt angle at liquid-crystal layer boundaries by polarimetric and crystal rotation methods in the same cell. Opt Spectrosc. 2015;119(6):1052–1055.
  • Simon R, Nicholas DM. An interferometric method of measuring tilt angles in aligned thin films of nematic liquid crystals. J Phys D: Appl Phys. 1985;18(7):1423–1430.
  • Sprokel GJ, Santo R, Swalen JD. Determination of the surface tilt angle by attenuated total reflection. Mol Cryst Liq Cryst. 1981;68(1):29–38.
  • Scheffer TJ, Nehring J. Accurate determination of liquid-crystal tilt bias angles. J Appl Phys. 1977;48(5):1783–1792.
  • Van Sprang HA. Combined tilt and thickness measurements on nematic liquid crystal samples. Mol Cryst Liq Cryst. 1991;199(1):19–26.
  • Wang SY, Wu HM, Yang KH. Simple and direct measurements of pretilt angles in hybrid-aligned nematic liquid-crystal cells. Appl Opt. 2013;52(21):5106–5111.
  • Gauza S, Wen CH, Tan B. UV-stable high-birefringence low-viscosity isothiocyaniane liquid crystals and application to 50-μsec response switching device. SID Symp Dig Tech Pap. 2012;35(1):1304–1307.
  • Dai YY, Gao L, Wang MH, et al. Improvement of the dynamic responses of liquid crystal mixtures through γ-Fe2O3 nanoparticle doping and driving mode adjustment. Liq Cryst. 2019;46(11):1643–1654.
  • Ye WJ, Li ZJ, Yuan R, et al. Accurate measurement of the twist elastic constant of liquid crystal by using capacitance method. Liq Cryst. 2019;46(3):349–355.
  • Ye WJ, Yuan R, Dai YY, et al. Improvement of image sticking in liquid crystal display doped with γ-Fe2O3 nanoparticles. Nanomaterials. 2018;8(1):8010005.
  • Chen H, Zhu R, Zhu J, et al. A simple method to measure the twist elastic constant of a nematic liquid crystal. Liq Cryst. 2015;42(12):1738–1742.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.