207
Views
2
CrossRef citations to date
0
Altmetric
Article

Mesomorphic properties of fluorinated cholesteric three-arm liquid crystals based on chenodeoxycholic acid

, &
Pages 2234-2246 | Received 03 Mar 2020, Accepted 30 Apr 2020, Published online: 22 May 2020

References

  • Chanishvili A, Petriashvili G, Ponjavidze N, et al. Reversible LED controlled optical activity of a cholesteric liquid crystal layer. Mol Cryst Liq Cryst. 2019;683(1):14–19.
  • Chodorow U, Parka J, Strzezysz O, et al. Liquid crystal phase shifter for THz radiation with cholesteric liquid crystal. Mol Cryst Liq Cryst. 2017;657(1):51–55.
  • Etxebarria J, Ortega J, Folcia CL. Enhancement of the optical absorption in cholesteric liquid crystals due to photonic effects: an experimental study. Liq Cryst. 2018;45(1):122–128.
  • Varanytsia A, Nagai H, Urayama K, et al. Accurate control of laser emission from cholesteric liquid crystal elastomers. Mol Cryst Liq Cryst. 2017;647(1):216–222.
  • Samoilov AN, Minenko SS, Lisetski LN, et al. Anomalous optical properties of photoactive cholesteric liquid crystal doped with single-walled carbon nanotubes. Liq Cryst. 2018;45(2):250–261.
  • Pyatnov MV, Vetrov SY, Timofeev IV. Localised optical states in a structure formed by two oppositely handed cholesteric liquid crystal layers and a metal. Liq Cryst. 2017;44(4):674–678.
  • Rafayelyan MS, Gharagulyan H, Sarukhanyan TM, et al. Light energy accumulation by cholesteric liquid crystal layer at oblique incidence. Liq Cryst. 2019;46(7):1079–1090.
  • Velazquez CA, Reyes JA, Vazquez GJ. Transition radiation in cholesteric liquid crystal. Liq Cryst. 2017;44(7):1104–1115.
  • Geng Y, Noh JH, Drevensek-Olenik I, et al. Elucidating the fine details of cholesteric liquid crystal shell reflection patterns. Liq Cryst. 2017;44(12–13):1948–1959.
  • Guo TY, Zheng XY, Palffy-Muhoray P. Surface anchoring energy of cholesteric liquid crystals. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1660425
  • Hayata K, Suzuki T, Fukawa M, et al. Thermotropic cholesteric liquid crystals from cellulose derivatives with ester and carbamate groups. J Photopolym Sci Technol. 2019;32(4):645–649.
  • Hsiao YC, Yeh ER, Lee W. Advanced color-reflective dual-frequency cholesteric liquid crystal displays and the driving matrix. Mol Cryst Liq Cryst. 2017;644(1):12–18.
  • Bashtyk Y, Bojko O, Fechan A, et al. Primary converters for optical sensors of physical values based on polymer dispersed cholesteric liquid crystal. Mol Cryst Liq Cryst. 2017;642(1):41–46.
  • Baek JM, Oh SW, Kim SH, et al. Fabrication of an initially-focal-conic cholesteric liquid crystal cell without polymer stabilization. Display. 2018;52:55–58.
  • Zhao YZ, Tian SP, Wang ZD, et al. A new-type composite film of cholesteric liquid crystal doped with PCBM for laser-damage prevention in both visible and near-infrared region. Mol Cryst Liq Cryst. 2017;656(1):113–123.
  • Czajkowski M, Klajn J, Cybińska J, et al. Cholesteric gratings induced by electric field in mixtures of liquid crystal and novel chiral ionic liquid. Liq Cryst. 2017;44(5):911–923.
  • Zhan XY, Fan HP, Li Y, et al. Low threshold polymerised cholesteric liquid crystal film lasers with red, green and blue colour. Liq Cryst. 2019;46(6):970–976.
  • Du XX, Li Y, Liu YJ, et al. Electrically switchable bistable dual frequency liquid crystal light shutter with hyper-reflection in near infrared. Liq Cryst. 2019;46(11):1727–1733.
  • Guo SM, Liang X, Zhang HM, et al. An electrically light-transmittance-controllable film with a low-driving voltage from a coexistent system of polymer-dispersed and polymerstabilised cholesteric liquid crystals. Liq Cryst. 2018;45(12):1854–1860.
  • Xie WL, Ouyang RR, Wang HY, et al. Synthesis and cytotoxicity of novel elastomers based on cholesteric liquid crystals. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1657594.
  • George AK, Carboni C, Zoghaib WM. Dielectric studies of a chiral fluorinated organosiloxane liquid crystal. Mol Cryst Liq Cryst. 2017;646(1):41–45.
  • Sarkar SD, Choudhury B. Optical and static dielectric study of a terminally fluorinated liquid crystalline compound. Mol Cryst Liq Cryst. 2018;665(1):91–99.
  • Jose TJ, Simi A, Raju MD, et al. Theoretical study on ultraviolet profile and chemical reactivity descriptors of fluorinated liquid crystals: effect of end chain length and substituent. Mol Cryst Liq Cryst. 2018;665(1):119–123.
  • Sinha D, Haldar S, Mandal PK. Influence of fluorination and chain length on the static dielectric properties of nematogenic bicyclohexyl phenyl derivatives. Phase Transitions. 2017;90(7):751–761.
  • Perkowski P, Żurowska M. Dielectric properties of a wide-temperature ferroelectric phase in a fluorinated compound. Phase Transitions. 2017;90(8):808–816.
  • Pytlarczyk M, Herman J, Harmata P, et al. The influence of the dialkylphenyltolane’s difluorosubstitution on mesomorphic and dielectric properties. Liq Cryst. 2018;45(10):1460–1469.
  • Goswami D, Sinha D, Mandal PK. Dielectric and electro-optic characterization of a partially fluorinated ferroelectric liquid crystal. AIP Conf Proc. 2018;1953:050012.
  • Goswami D, Mandal PK, Wegłowska D. Dielectric and electro-optic properties of two biphenylyl benzoate-based ferroelectric mesogens with tilted hexagonal phases. Liq Cryst. 2019;1–11. DOI:10.1080/02678292.2019.1686776
  • Arakawa Y, Tsuji H. The effect of fluorine substitutions on the refractive index properties for π-conjugated calamitic nematic materials. Phase Transitions. 2017;90(6):549–556.
  • Zhang HM, Zhong TJ, Chen M, et al. The physical properties of alkene-terminated liquid crystal molecules/E8 mixture and the electro-optical properties as they doped in polymer-dispersed liquid crystal systems. Liq Cryst. 2018;45(8):1118–1128.
  • Zhang HM, Cao H, Chen M, et al. Effects of the fluorinated liquid crystal molecules on the electro-optical properties of polymer dispersed liquid crystal films. Liq Cryst. 2017;44(14):2301–2310.
  • Dong L, Xu ZX, Tao HZ, et al. Non-symmetric chiral nematic liquid crystal dimers containing trifluoromethyl and 1,2-propanediol. Liq Cryst. 2018;45(12):1734–1745.
  • Ge LN, Xian SW, Huang Y, et al. Synthesis and mesomorphism of novel multi-arm liquid crystals with cholic acid as chiral centre linking Schiff base moieties as mesogens. Liq Cryst. 2018;45(7):1055–1067.
  • Wang D, Huang Y, Lv JM, et al. Multi-arm azobenzene liquid crystal based on cholic acid: synthesis and mesophase properties. Liq Cryst. 2018;45(12):1813–1824.
  • Wang D, Min Y, Quan YY, et al. Non-conventional multi-arm ester liquid crystal derived from cholic acid: synthesis, thermal and optical behaviour. Liq Cryst. 2019;46(15):2167–2180.
  • Wang D, Quan YY, He QQ, et al. Unconventional multi-arm azobenzene liquid crystal with different lengths of mesogenic arm based on cholic acid: synthesis, mesophase properties and photo-induced transition. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1651413.
  • Chen XS, Tao HZ, Dong L, et al. Mesomorphic properties of non-symmetric three-arm chenodeoxycholic acid-derived liquid crystals. Liq Cryst. 2018;46(3):442–453.
  • Dong L, Yao M, Wu SJ, et al. Mesomorphic properties of multi-arm chenodeoxycholic acid-derived liquid crystals. J Mol Struct. 2017;1149:585–592.
  • Olate FA, Parra ML, Vergara JM, et al. Star-shaped molecules as functional materials based on 1,3,5-benzenetriesters with pendant 1,3,4-thiadiazole groups: liquid crystals, optical, solvatofluorochromic and electrochemical properties. Liq Cryst. 2017;44(7):1173–1184.
  • Roth S, Lehmann M. Mesogenic origami-four-armed, star-shaped mesogens as precursors for functional liquid crystal materials. Liq Cryst. 2017;44(12–13):1830–1851.
  • Vinayakumara DR, Swamynathan K, Kumar S, et al. Optoelectronic exploration of novel non-symmetrical star-shaped discotic liquid crystals based on cyanopyridine. New J Chem. 2018;42:16999–17008.
  • Li CP, Niu QF, Zhang SS, et al. Synthesis, photophysical and electrochemical properties of a new star-shaped molecule with a 1,3,5-triethynylbenzene core and diketopyrrolopyrrole arms. RSC Adv. 2019;9:28357–28363.
  • Imrie CT, Henderson PA, Yeap GY. Liquid crystal oligomers: going beyond dimers. Liq Cryst. 2009;36(6–7):755–777.
  • Donaldson T, Henderson PA, Achard MF, et al. Chiral liquid crystal tetramers. J Mater Chem. 2011;21(29):10935–10941.
  • Imrie CT, Lu ZB, Picken SJ, et al. Oligomeric rod-disc nematic liquid crystals. Chem Commun. 2007;12(12):1245–1247.
  • Henderson PA, Imrie CT. Liquid crystal tetramers: influence of molecular shape on liquid crystal behaviour. Liq Cryst. 2005;32(11–12):1531–1541.
  • Donaldson T, Henderson PA, Achard MF, et al. Non-symmetric chiral liquid crystal trimers. Liq Cryst. 2011;38(10):1331–1339.
  • Tuchband MR, Paterson DA, Salamonczykc M, et al. Distinct differences in the nanoscale behaviors of the twist-bend liquid crystal phase of a flexible linear trimer and homologous dimer. Proc Natl Acad Sci U S A. 2019;116(22):10698–10704.
  • Tang XQ, Bai L, Kong SW, et al. Multi-arm ionic liquid crystals formed by cholesteric mesophase and pyridinium groups. Liq Cryst. 2019;46(8):1252–1265.
  • Tian M, Zhang BY, Cong YH, et al. Mesomorphic properties of multi-arm liquid crystals containing glucose and sorbitol as cores. J Mol Struct. 2009;923(1):39–44.
  • Tian M, Zhang BY, Cong YH, et al. Cholesteric starshaped liquid crystals induced by a maltose core: synthesis and characteristics. Liq Cryst. 2010;37(11):1373–1379.
  • Zhang W, Tian M. The influence of flexible spacer and the chirality of the core on the formation of chiral nematic phase of symmetric dimers containing trifluoromethyl terminal. Liq Cryst. 2019;46(9):1452–1466.
  • Brewster JH. A useful model of optical activity. I. Open chain compounds. J Am Chem Soc. 1959;81(20):5475–5483.
  • Brewster JH. Some applications of the conformational dissymmetry rule. Tetrahedron. 1961;13(13):106–122.
  • Brewster JH. The optical activity of saturated cyclic compounds. J Am Chem Soc. 1959;81(20):5483–5493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.