723
Views
12
CrossRef citations to date
0
Altmetric
Article

Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal

, , , , ORCID Icon, , & show all
Pages 255-262 | Received 18 Apr 2020, Accepted 21 May 2020, Published online: 03 Aug 2020

References

  • Uppu R, Mujumdar S. Lévy exponents as universal identifiers of threshold and criticality in random lasers. Phys Rev A. 2014;90(2):025801.
  • Hui C, J Y X, Yong L, et al. Random lasers with coherent feedback. IEEE J Sel Top Quantum Electron. 2003;9(1):111–119.
  • Polson RC, Vardeny ZV. Organic random lasers in the weak-scattering regime. Phys Rev B. 2005;71(4):045205.
  • Wiersma DS. The physics and applications of random lasers. Nat Phys. 2008;4(5):359–367.
  • Fallert J, Dietz RJB, Sartor J, et al. Co-existence of strongly and weakly localized random laser modes. Nat Photonics. 2009;3(5):279–282.
  • Graydon O. Random thoughts. Nat Photonics. 2013;7(3):164–165.
  • Turitsyn SK, Babin SA, El-Taher AE, et al. Random distributed feedback fibre laser. Nat Photonics. 2010;4(4):231–523.
  • Polson RC, Raikh ME, Vardeny ZV. Universality in unintentional laser resonators in π-conjugated polymer films. C R Phys. 2002;3(4):509–521.
  • Meng X, Fujita K, Murai S, et al. Random lasing in ballistic and diffusive regimes for macroporous silica-based systems with tunable scattering strength. Opt Express. 2010;18(12):12153–12160.
  • Redding B, Choma MA, Cao H. Spatial coherence of random laser emission. Opt Lett. 2011;36(17):3404–3406.
  • Redding B, Choma MA, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photonics. 2012;6(6):355–359.
  • Gao S, Zhang L, Xu Y, et al. High-speed random bit generation via brillouin random fiber laser with non-uniform fibers. IEEE Photonics Technol Lett. 2017;29(16):1352–1355.
  • Polson RC, Vardeny ZV. Random lasing in human tissues. Appl Phys Lett. 2004;85(7):1289–1291.
  • Zadok A, Antman Y, Primerov N, et al. Random-access distributed fiber sensing. Laser Photonics Rev. 2012;6(5):L1–L5.
  • Perumbilavil S, Piccardi A, Barboza R, et al. Beaming random lasers with soliton control. Nat Commun. 2018;9(1):3863.
  • L W L, Deng LG. Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells. Eur Phys J B. 2013;86(3):1–6.
  • Chang CH, Kuo CT, Sun HY, et al. All-optically controllable nanoparticle random laser in a well-aligned laser-dye-doped liquid crystal. Opt Express. 2016;24(25):28739–28747.
  • Zhang WL, Song YB, Zeng XP, et al. Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings. Photonics Res. 2016;4(3):102–103.
  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford (UK): Oxford university press; 1993.
  • Lin JH, Li YH, Lin SH, et al. Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells. Photonics Res. 2018;6(5):403–407.
  • Lee CR, Lin SH, Guo CH, et al. All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets. Opt Express. 2010;18(3):2406–2412.
  • Hong Q, T X W, Wu ST. Optical wave propagation in a cholesteric liquid crystal using the finite element method. Liq Cryst. 2003;30(3):367–375.
  • Lu HB, Zhang Q, Sha JQ, et al. Highly polarized absorption and emission from polymer-stabilized smectic guest-host systems. Liq Cryst. 2019;46(10):1574–1583.
  • Kopp VI, Genack AZ, Zhang ZQ. Large coherence area thin-film photonic stop-band lasers. Phys Rev Lett. 2001;86(9):1753–1756.
  • Coles H, Morris SM. Liquid-crystal lasers. Nat Photonics. 2010;4(10):676–685.
  • Ortega J, Folcia CL, Etxebarria J. Laser emission at the second-order photonic band gap in an electric-field-distorted cholesteric liquid crystal. Liq Cryst. 2019;46(15):2159–2166.
  • Xiang J, Varanytsia A, Minkowski F, et al. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc Natl Acad Sci U S A. 2016;113(46):12925–12928.
  • Schokker AH, Koenderink AF. Lasing in quasi-periodic and aperiodic plasmon lattices. Optica. 2016;3(7):686–693.
  • Song QH, Liu LY, Xu L. Directional random-laser emission from Bragg gratings with irregular perturbation. Opt Lett. 2009;34(3):344–346.
  • Morris SM, Gardiner DJ, Hands PJW, et al. Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals. Appl Phys Lett. 2012;100(7):071110.
  • Lu HB, Xing J, Wei C, et al. Band-gap-tailored random laser. Photonics Res. 2018;6(5):390–395.
  • Yu M, Wang L, Nemati H, et al. Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals. J Polym Sci, Part B: Polym Phys. 2017;55(11):835–846.
  • Zhan XY, Fan HP, Li Y, et al. Low threshold polymerised cholesteric liquid crystal film lasers with red, green and blue colour. Liq Cryst. 2019;46(6):970–976.
  • Nemati H, Liu S, Zola RS, et al. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter. 2015;11(6):1208–1213.
  • Lu HB, Wei C, Zhang Q, et al. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal. Photonics Res. 2019;7(2):137–143.
  • Lu L, Sergan V, Bos PJ. Mechanism of electric-field-induced segregation of additives in a liquid-crystal host. Phys Rev E. 2012;86(5):051706.
  • Lin SH, Chen PY, Li YH, et al. Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells. IEEE Photonics J. 2017;9(2):1–8.
  • Blinov LM. Lasers on cholesteric liquid crystals: mode density and lasing threshold. JETP Lett. 2009;90(3):166–171.
  • Folcia CL, Ortega J, Etxebarria J. Cone-shaped emissions in cholesteric liquid crystal lasers: the role of anomalous scattering in photonic structures. ACS Photonics. 2018;5(11):4545–4553.
  • Folcia CL, Ortega J, Etxebarria J. Anomalous light scattering in photonic cholesteric liquid crystals. Liq Cryst. 2020. DOI:10.1080/02678292.2019.1693645
  • Liu Y, Yang W, Xiao S, et al. Surface-emitting perovskite random lasers for speckle-free imaging. ACS Nano. 2019;13(9):10653–10661.
  • He J, Chan WK, Cheng X, et al. Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback. Adv Opt Mater. 2018;6(7):1701187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.