334
Views
1
CrossRef citations to date
0
Altmetric
Article

When hydrogen bond tailors molecular packing in non-anisometric molecules. The case study of N-alkyl 1,3-diphenyl-4,5-dihydro-1H-pyrazole-5-carboximidamides

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 395-404 | Received 13 Mar 2020, Accepted 16 Jun 2020, Published online: 29 Jun 2020

References

  • Goodby JW. Nano-objects-sculpting and shape in molecular material design (The Pierre Gilles de Gennes ILCS prize lecture). Liq Cryst. 2019;46:1901–1924.
  • Spiess HW. Improving the organisation of discotics: annealing, shape, side groups, chirality. Liq Cryst. 2020. DOI:https://doi.org/10.1080/02678292.2019.1622157
  • Zhong T, Mandle R, Saez I, et al. Rods to discs in the study of mesomorphism in discotic liquid crystals. Liq Cryst. 2018;45(13–15):2274–2293.
  • Lehmann M, Dechant M, Lambov M, et al. Free space in liquid crystals—molecular design, generation, and usage. Acc Chem Res. 2019;52(6):1653–1664.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47:2754–2787.
  • Gallardo H, Westphal E. Importance of organic synthesis in the development of liquid crystals. Curr Org Synth. 2015;12(6):806–821.
  • Cardinaels T, Ramaekers J, Nockemann P, et al. Rigid tetracatenar liquid crystals derived from 1, 10-phenanthroline. Soft Matter. 2008;4:2172–2185.
  • Fritsch L, Baptista LA, Bechtold IH, et al. Isoxazoline-and isoxazole-liquid crystalline schiff bases: A puzzling game dictated by entropy and enthalpy effects. J Mol Liq. 2020;298:111750.
  • Kotian SY, Mohan CD, Merlo AA, et al. Small molecule based five-membered heterocycles: A view of liquid crystalline properties beyond the biological applications. J Mol Liq. 2020;297:111686.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • Onuma T, Hosono E, Takenouchi M, et al. Noncovalent approach to liquid-crystalline ion conductors: high-rate performances and room-temperature operation for Li-ion batteries. ACS Omega. 2018;3:159–166.
  • O’Neill M, Kelly SM. Liquid crystals for charge transport, luminescence, and photonics. Adv Mater. 2003;15(14):1135–1146.
  • Hanna J. Towards a new horizon of optoelectronic devices with liquid crystals. Optoelectron Rev. 2005;13:259–267.
  • Ahipa TN, Kumar V, Adhikari AV. New columnar liquid crystal materials based on luminescent 2-methoxy-3-cyanopyridines. Struct Chem. 2014;25(4):1165–1174.
  • Bushby RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38(11–12):1415–1426.
  • Yoon DK, Smith GP, Tsai E, et al. Alignment of the columnar liquid crystal phase of nano-DNA by confinement in channels. Liq Cryst. 2012;39(5):571–577.
  • Bellini T, Zanchetta G, Fraccia TP, et al. Liquid crystal self-assembly of random-sequence DNA oligomers. Proc Natl Acad Sci. 2012;109(4):1110–1115.
  • Kato T, Frechet JM. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J Am Chem Soc. 1989;111:8533–8534.
  • Paleos CM, Tsiourvas D. Thermotropic liquid crystals formed by intermolecular hydrogen bonding interactions. Angew Chem Int Ed. 1995;34:1696–1711.
  • Paleos CM, Tsiourvas D. Supramolecular hydrogen-bonded liquid crystals. Liq Cryst. 2001;28:1127–1161.
  • Onuma T, Hosono E, Takenouchi M, et al. Noncovalent approach to liquid-crystalline ion conductors: high-rate performances and room-temperature operation for Li-ion batteries. ACS Omega. 2018;3:159–166.
  • Vera F, Barbera J, Romero P, et al. Orthogonal action of noncovalent interactions for photoresponsive chiral columnar assemblies. Angew Chem Int Ed. 2010;49(29):4910–4914.
  • Kuo HM, Tsai SL, Lee GH, et al. Heterocyclic 3,5-disubstituted phenylpyrazoles and isoxazoles: synthesis and mesomorphic behaviour. Tetrahedron. 2013;69:618–626.
  • Vieira AA, Gallardo H, Barberá J, et al. Luminescent columnar liquid crystals generated by self-assembly of 1,3,4-oxadiazole derivatives. J Mater Chem. 2011;21(16):5916–5922.
  • Palaska E, Aytemir M, Uzbay IT, et al. Synthesis and antidepressant activities of some 3, 5-diphenyl-2-pyrazolines. Eur J Med Chem. 2001;1:36:539–543.
  • Barbera J, Clays K, Gimenez R, et al. Versatile optical materials: fluorescence, non-linear optical and mesogenic properties of selected 2-pyrazoline derivatives. J Mater Chem. 1998;8:1725–1730.
  • Badavath VN, Kumar A, Jadav SS, et al. Synthesis and antidepressant activity of pyrazoline based MAO-inhibitors. J Pharm Chem. 2016;3:1–3.
  • Sowmya PV, Poojary B, Revanasiddappa BC, et al. Novel 2-methyl-6-arylpyridines carrying active pharmacophore 4, 5-dihydro 2-pyrazolines: synthesis, antidepressant, and anti-tuberculosis evaluation. Res Chem Intermediat. 2017;43:7399–7422.
  • Rao GS, Kalaichelvan VK, Rao GS. Synthesis and antidepressant activity of certain chalcones and chalcone based simple pyrazolines. J Pharm Sci Res. 2015;7:676–680.
  • Patil PO, Bari SB. Synthesis, characterization and screening for antidepressant and anticonvulsant activity of 4, 5-dihydropyrazole bearing indole derivatives. Arab J Chem. 2016;9:588–595.
  • Sonawane VD, Sonawane B, Hubalikar M, et al. Design, synthesis, characterization, and biological evaluation of certain novel imidazo thiazole pyrazoline derivatives as anti-inflammatory agent. Int J Innovative Knowl Concepts. 2019;27:265–276.
  • Sever B, Altıntop MD. New benzodioxole-based pyrazoline derivatives: synthesis and anticandidal, in silico ADME, molecular docking studies. Lett Drug Des Discov. 2019;16:82–92.
  • Stefanes NM, Toigo J, Maioral MF, et al. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity. Bioorg Med Chem. 2019;27:375–382.
  • Adhikari N, Maiti MK, Jha T. Exploring structural requirements of 1-N-substituted thiocarbamoyl-3-phenyl-2-pyrazolines as antiamoebic agents using comparative QSAR modelling. Bioorg Med Chem Lett. 2010;20(14):4021–4026.
  • Raghuvanshi SD, Verma N, Singh SV, et al. Synthesis of thymol-based pyrazolines: an effort to perceive novel potent-antimalarials. Bioorg Chem. 2019;88:102933.
  • Lombardino JG, Otterness IG. Novel immunosuppressive agents. Potent immunological activity of some benzothiopyrano [4, 3-c] pyrazol-3-ones. J Med Chem. 1981;24:830–834.
  • Ahn JH, Kim HM, Jung SH, et al. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents. Bioorg Med ChemLett. 2004;14:4461–4465.
  • Acharya BN, Saraswat D, Tiwari M, et al. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur J Med Chem. 2010;45(2):430–438.
  • Wang X, Pan YM, Huang XC, et al. A novel methodology for synthesis of dihydropyrazole derivatives as potential anticancer agents. Org Biomol Chem. 2014;12:2028–2032.
  • Kumari S, Paliwal SK, Chauhan R. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr Bioact Compd. 2018;14(1):39–47.
  • Ali MA, Siddiqui MSA. A. synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur J Med Chem. 2007;42:268–275.
  • Ahmed MH, El-Hashash MA, Marzouk MI, et al. Design, synthesis, and biological evaluation of novel pyrazole, oxazole, and pyridine derivatives as potential anticancer agents using mixed chalcone. J Heterocycl Chem. 2019;56(1):114–123.
  • Amir M, Kumar H, Khan SA. Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg Med Chem Lett. 2008;18(3):918–922.
  • Nada A, Hassaneen H, Kandile N, et al. Synthesis and biological activity of some new pyrazoline and pyrrolo [3, 4-c] pyrazole-4, 6-dione derivatives: reaction of nitrilimines with some dipolarophiles. Molecules. 2008;13:1011–1024.
  • Su Y, Zhao Y, Chang B, et al. A [3+ 2] cycloaddition of para-quinone methides with nitrile imines: approach to spiro-pyrazoline-cyclohexadienones. J Org Chem. 2019;84:6719–6728.
  • Voronin VV, Ledovskaya MS, Gordeev EG, et al. [3+ 2]-Cycloaddition Of In Situ Generated Nitrile Imines And Acetylene For Assembling Of 1, 3-Disubstituted Pyrazoles With Quantitative Deuterium Labeling. J Org Chem. 2018;83:3819–3828.
  • Yavari I, Taheri Z, Naeimabadi M, et al. A convenient synthesis of tetrasubstituted pyrazoles from nitrile imines and 2-(Thioxothiazolidin-5-ylidene)acetates. Synlett. 2018;29(7):918–921.
  • Wang Y, Claudia IRV, Lin Q. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org Lett. 2007;9:4155–4158.
  • Nakamichi N, Kawashita Y, Hayashi M. Oxidative aromatization of 1,3,5-trisubstituted pyrazolines and hantzsch 1,4-dihydropyridines by Pd/C in acetic acid. Org Lett. 2002;4(22):3955–3957.
  • Abakumov VV, Pivnenko NS, Kutulya LA, et al. New Chiral 3-Aryl-7-arylmethylidene-3,3a,4,5,6,7-hexahydroindazoles: synthesis, structure, and twisting power in nematic liquid crystals. Russ J Org Chem. 2010;46(8):1207–1213.
  • Kishikawa K, Nakahara S, Nishikawa Y, et al. A ferroelectrically Switchable Columnar Liquid Crystal Phase With Achiral Molecules: Superstructures And Properties Of Liquid Crystalline Ureas. J Am Chem Soc. 2005;127(8):2565–2571.
  • Aakeroy CB, Sinha AS, Epa KN, et al. Structural Chemistry Of Oximes. Cryst Growth Des. 2013;13(6):2687–2695.
  • Jayaroopa P, Vasanth KG, Ajay KK. Synthesis of 3,4-diaryl-1-phenyl-4,5-dihydro-1H-pyrazole-5-carbonitriles via 1,3-dipolar cycloaddition reactions. Turk J Chem. 2013;37:853–857.
  • Govindaraju M, Mylarappa BN, Ajay KK. Synthesis of novel pyrazole derivatives and their efficacy as antimicrobial agents. Int J Pharm Sci. 2013;5:734–737.
  • Ningaiah S, Bhadraiah UK, Keshavamurthy S, et al. Novel pyrazoline amidoxime and their 1,2,4-oxadiazole analogues: synthesis and pharmacological screening. Bioorg Med Chem Lett. 2013;23(16):4532–4539.
  • Chandra SN, K B U, Jeyaseelan S, et al. (E)-N’-Hy-droxy-1,3-diphenyl-4,5-di-hydro-1H-pyrazole-5-carboximidamide. Acta Cryst. 2012;68:1661–1662.
  • Hutter JL, Bechhoefer J. Banded spherulitic growth in a liquid crystal. J Cryst Growth. 2000;01:332–343.
  • Pisula W, Kastler M, Wasserfallen D, et al. Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents. J Am Chem Soc. 2004;01:8074–8075.
  • Low JN, Santos LM, Lima CF, et al. The supramolecular structures of oximes: an update and the crystal structure of 1,3-diphenyl-propan-2-one oxime. Eur J Chem. 2010;1:61–66.
  • Bechtold IH, Eccher J, Faria GC, et al. New columnar Zn-phthalocyanine designed for electronic applications. J Phys Chem B. 2012;45:13554–13560.
  • Wen CR, Wang YJ, Wang HC, et al. Columnar metallomesogens derived from 1,3,4-oxadiazoles and X-ray crystal structure of dichlorobis[2,5-bis(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole]palladium(II). Chem Mater. 2005;17:1646–1654.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor‐made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.