436
Views
5
CrossRef citations to date
0
Altmetric
Article

Dielectric and electro-optical studies of Au/SnO2 core/shell nanocrystals incorporated ferroelectric liquid crystal

ORCID Icon, &
Pages 2305-2312 | Received 23 Apr 2020, Accepted 06 Jul 2020, Published online: 22 Jul 2020

References

  • Hartmann W. Ferroelectric liquid crystal displays for television application. Ferroelectrics. 1991;122(1):1–26.
  • Sharma V, Kumar A, Ganguly P, et al. Highly sensitive bovine serum albumin biosensor based on liquid crystal. Appl Phys Lett. 2014;104(4):043705.
  • Cladis PE. New liquid-crystal phase diagram. Phys Rev Lett. 1975;35(1):48–51.
  • Lagerwall ST. Ferroelectric liquid crystal displays with greyscale. Liq Cryst Today. 1996;6(2):5–7.
  • Ganguly P, Joshi T, Singh S, et al. Electrically modulated photoluminescence in ferroelectric liquid crystal. Appl Phys Lett. 2012;101(26):262902.
  • Prakash J, Choudhary A, Kumar A, et al. Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal. Appl Phys Lett. 2008;93(11):112904.
  • Kumar A, Prakash J, Khan MT, et al. Memory effect in cadmium telluride quantum dots doped ferroelectric liquid crystals. Appl Phys Lett. 2010;97(16):163113. .
  • Ganguly P, Kumar A, Tripathi S, et al. Faster and highly luminescent ferroelectric liquid crystal doped with ferroelectric BaTiO3 nanoparticles. Appl Phys Lett. 2013;102(22):222902.
  • Doke S, Sonawane K, Raghavendra Reddy V, et al. Low power operated highly luminescent ferroelectric liquid crystal doped with CdSe/ZnSe core/shell quantum dots. Liq Cryst. 2018;45(10):1518.
  • Joshi T, Kumar A, Prakash J, et al. Low power operation of ferroelectric liquid crystal system dispersed with zinc oxide nanoparticles. Appl Phys Lett. 2010;96(25):253109.
  • Pandey S, Vimal T, Singh DP, et al. Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarisation coupling with dopant. Liq Cryst. 2016;43(7):980–993.
  • Prakash J, Chandran A, Malik A, et al. Role of cell thickness in tailoring the dielectric and electro-optical parameters of ferroelectric liquid crystals. Liq Cryst. 2015;42(12):1748–1753.
  • Joshi T, Ganguly P, Haranath D, et al. Tuning the photoluminescence of ferroelectric liquid crystal by controlling the size of dopant ZnO quantum dots. Mater Lett. 2014;114:156–158.
  • Kumar A, Prakash J, Mehta DS, et al. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. Appl Phys Lett. 2009;95(2):023117. .
  • Kumar V, Kumar A, Biradar AM, et al. Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots. Liq Cryst. 2014;41(12):1719–1725.
  • Pandey S, Vimal T, Singh DP, et al. Cd1-xZnxS/ZnS core/shell quantum dot ferroelectric liquid crystal composite system: analysis of faster optical response and lower operating voltage. Liq Cryst. 2014;41(12):1811–1820.
  • Shukla RK, Sharma A, Mori T, et al. Effect of two different size chiral ligand-capped gold nanoparticle dopants on the electro-optic and dielectric dynamics of a ferroelectric liquid crystal mixture. Liq Cryst. 2016;43(6):695–703.
  • Podgornov FV, Wipf R, Stühn B, et al. Low-frequency relaxation modes in ferroelectric liquid crystal/gold nanoparticle dispersion: impact of nanoparticle shape. Liq Cryst. 2016;43(11):1536–1547.
  • Bezborodov VS, Mikhalyonok SG, Kuz’menok NM, et al. Anisotropic derivatives of (-)-L-lactic acid and their nanocomposites. Liq Cryst. 2018;45(8):1223–1233.
  • Tschierske C. Mirror symmetry breaking in liquids and liquid crystals. Liq Cryst. 2018;45(13–15):2221–2252.
  • Zhuang Z, Sheng W, Yan Y. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv Mater. 2014;26(23):3950–3955.
  • Rai P, Majhi SM, Yu YT, et al. Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv. 2015;5(93):76229–76248.
  • Qi J, Dang X, Hammond PT, et al. Highly E ffi cient plasmon-enhanced dye-sensitized solar cells through. ACS Nano. 2011;5(9):7108–7116.
  • Mondal K, Sharma A. Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC Adv. 2016;6(87):83589–83612.
  • Tripathy SK, Mishra A, Jha SK, et al. Synthesis of thermally stable monodispersed Au@SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods. 2013;5(6):1456–1462.
  • Lee SH, Rusakova I, Hoffman DM, et al. Monodisperse SnO2-coated gold nanoparticles are markedly more stable than analogous SiO2-coated gold nanoparticles. ACS Appl Mater Interfaces. 2013;5(7):2479–2484.
  • Oldfield G, Ung T, Mulvaney P. Au@SnO2 core-shell nanocapacitors. Adv Mater. 2000;12(20):1519–1522.
  • Doke S, Martinez-Teran E, El-Gendy AA, et al. Sustained multiferroicity in liquid crystal induced by core/shell quantum dots. J Mol Liq. 2019;288:110836.
  • Doke S, Ganguly P, Mahamuni S. Improvement in molecular alignment of ferroelectric liquid crystal by Co-ZnO/ZnO core/shell quantum dots. Liq Cryst. 2020;47(3):309–316.
  • Singh DP, Pandey S, Gupta SK, et al. Quenching of photoluminescence and enhanced contrast of ferroelectric liquid crystal dispersed with Cd1-xZnxS/ZnS core/shell nanocrystals. J Lumin. 2016;173:250–256.
  • Ganguly P, Kumar A, Muralidhar K, et al. Nanoparticles induced multiferroicity in liquid crystal. Appl Phys Lett. 2016;108(18):182905. .
  • Tiwari N, Doke S, Lohar A, et al. Local structure investigation of (Co, Cu) co-doped ZnO nanocrystals and its correlation with magnetic properties. J Phys Chem Solids. 2016;90:100–113.
  • Doke S, Sonawane K, Banerjee A, et al. Evidence of various stabilizing mechanisms in ferromagnetic Co doped ZnO nanocrystals. J Alloys Compd. 2017;726:947–954.
  • Doke S, Shinde A, Raghavendra Reddy V, et al. Enhancement in electro-optical properties of ferroelectric liquid crystal by doping perovskite CsPbBr3 quantum dots. Liq Cryst. 2020;47(7):1111–1118.
  • Chandrasekhar S, Ranganath GS. The structure and energetics of defects in liquid crystals. Adv Phys. 1986;35(6):507–596.
  • Vimal T, Pandey S, Gupta SK, et al. Manifestation of strong magneto-electric dipolar coupling in ferromagnetic nanoparticles−FLC composite: evaluation of time-dependent memory effect. Liq Cryst. 2018;45(5):687–697.
  • Vimal T, Pandey S, Singh DP, et al. ZnS quantum dot induced phase transitional changes and enhanced ferroelectric mesophase in QDs/FLC composites. J Phys Chem Solids. 2017;100:134–142.
  • Kumar A, Tripathi S, Deshmukh AD, et al. Time evolution photoluminescence studies of quantum dot doped ferroelectric liquid crystals. J Phys D Appl Phys. 2013;46(19):195302.
  • Malik A, Choudhary A, Silotia P, et al. Effect of ZnO nanoparticles on the SmC*-SmA* phase transition temperature in electroclinic liquid crystals. J Appl Phys. 2011;110(6):064111.
  • Kumar A, Prakash J, Deshmukh AD, et al. Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots. Appl Phys Lett. 2012;100(13):134101.
  • Tripathi S, Ganguly P, Haranath D, et al. Optical response of ferroelectric liquid crystals doped with metal nanoparticles. Appl Phys Lett. 2013;102(6):063115.
  • Li LS, Huang JY. Tailoring switching properties of dipolar species in ferroelectric liquid crystal with ZnO nanoparticles. J Phys D Appl Phys. 2009;42(12):125413.
  • Bawa A, Gangwar LK, Dhingra A, et al. Polarisation-dependent dielectric processes in ferroelectric liquid crystals. Liq Cryst. 2019;46(2):166–175.
  • Khan S, Chauhan S, Chandran A, et al. Enhancement of dielectric and electro-optical parameters of a newly prepared ferroelectric liquid crystal mixture by dispersing nano-sized copper oxide. Liq Cryst. 2020;47(2):263–272.
  • Gangwar LK, Kumar A, Singh G, et al. Probing the impact of carbon quantum dots on partially unwound helical mode in ferroelectric liquid crystals. J Appl Phys. 2019;125(12):125108.
  • Joshi T, Kumar A, Prakash J, et al. Low frequency dielectric relaxations of gold nanoparticles/ferroelectric liquid crystal composites. Liq Cryst. 2010;37(11):1433–1438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.