233
Views
5
CrossRef citations to date
0
Altmetric
Article

Novel nematic and glassy liquid crystalline oligomers as electroluminescent organic semiconductors

ORCID Icon, , , &
Pages 626-640 | Received 14 Jun 2020, Accepted 21 Jul 2020, Published online: 06 Aug 2020

References

  • Kim SW, Lee DM, Kim JH, et al. Highly polarised electroluminescence in low aspect ratio mesogenic molecules. Liq Cryst. 2019;46(7):1136–1144.
  • Pu JL, Yang TZ, Wang YF, et al. Tunable self-organization in n-type liquid crystalline dibenzocoronene tetracarboxdiimides for high photoconductivity. Liq Cryst. 2020;47(2):291–300.
  • Yang MC, Hanna JI, Iino H. Novel calamitic liquid crystalline organic semiconductors based on electron-deficient dibenzo[c, h][2, 6]naphthyridine: synthesis, mesophase, and charge transport properties by the time-of-flight technique. J Mater Chem C. 2019;7(42):13192–13202.
  • Kondratenko K, Boussoualem Y, Singh DP, et al. Molecular p-doping in organic liquid crystalline semiconductors: influence of the charge transfer complex on the properties of mesophase bulk charge transport. Phys Chem Chem Phys. 2019;21(34):18686–18698.
  • Ozaki M, Yoneya M, Shimizu Y, et al. Carrier transport and device applications of the organic semiconductor based on liquid crystalline non-peripheral octaalkyl phthalocyanine. Liq Cryst. 2018; 45 (13–15): 2376–2389.
  • Hu G, Billa M, Kitney SP, et al. Symmetrical carbazole-fluorene-carbazole nematic liquid crystals as electroluminescent organic semiconductors. Liq Cryst. 2018;45:965–979.
  • Hu G, Kitney SP, Kelly SM, et al. Novel liquid crystalline organic semiconducting oligomers incorporating N-Heterocyclic carbazole moieties for fluorescent OLEDs. Liq Cryst. 2017;44:1632–1645.
  • Setia S, Sidiq S, De J, et al. Applications of liquid crystals in biosensing and organic light-emitting device: future aspects. Liq Cryst. 2016; 43 (13–15): 2009–2050.
  • Gupta RK, Manjuladevi V, Karthik C, et al. Thin films of discotic liquid crystals and their applications. Liq Cryst. 2016; 43 (13–15): 2079–2091.
  • O’Neill M, Kelly SM. Liquid crystalline semiconductors: materials, properties and applications. Dordrecht (Netherlands): Springer;2013. p. 173–196. Chapter 6, Optical properties of light-emitting liquid crystals.
  • O’Neill M, Kelly SM. Ordered materials for organic electronics and photonics. Adv Mater. 2011;23(5):566–584.
  • Kelly SM. Flat panel displays: advanced organic materials. Cambridge (UK): The Royal Society of Chemistry; 2000.
  • Hu G, Kitney SP, Kelly SM, et al. Polymer network hole transport layers based on photochemically cross-linkable N,N-dially amide tri-N-substituted triazatruxene monomers. RSC Adv. 2018;8(16): 8580–8585.
  • Liedtke A, O’Neill M, Wertmöller A, et al. White-light OLEDs using liquid crystal polymer network. Chem Mater. 2008;20(11):3579–3586.
  • Aldred MP, Carrasco-Orozco M, Contoret AEA, et al. Organic electroluminescence using polymer networks from smectic liquid crystals. Liq Cryst. 2006;33(4):459–467.
  • Dong Q, Lian H, Gao Z, et al. Novel spirofluorene/indole/carbazole-based hole transport materials with high triplet energy for efficient green phosphorescent organic light-emitting diodes. Dyes Pigments. 2017;137:84–90.
  • Billa MR, Kassireddy K, Haro M, et al. Liquid crystalline organic semiconductors: nematic spiro[cyclopentyl-1,9ʹ]fluorenes. Liq Cryst. 2011;38(7):813–829.
  • Cho K, Reddy MR, Kim D, et al. Synthesis and characterization of fluorene derivatives as organic semiconductors for organic field-effect transistor. Mol Cryst Liq Cryst. 2019;690(1):56–66.
  • Ou CJ, Zhu C, Ding XH, et al. Dimerization effect of fluorene-based semiconductors on conformational planarization for microcrystal lasing. J Mater Chem C. 2017;5(22):5345–5355.
  • Locklin J, Ling MM, Sung A, et al. High-performance organic semiconductors based on fluorene-phenylene oligomers with high ionization potentials. Adv Mater. 2006;18(22):2989–2992.
  • Dmochowska E, Bombalska A, Kula P. Synthesis and mesomorphic properties of four ring, rod-like fluorene derivatives - the influence of the lateral substitution on mesomorphic properties of 2,7-bis-(4-alkylphenyl)-fluorenes. Liq Cryst. 2020;47(1):17–27.
  • Turkoglu G, Cinar ME, Ozturk T. Sulfur Chemistry, 1st ed. Basel (Switzerland): Springer Nature Switzerland AG, 2019. p. 79–124. Chapter 3, Thiophene-based organic semiconductors.
  • Hahn L, Hermannsdorfer A, Günther B, et al. (Oligo-)thiophene functionalized tetraazaperopyrenes: donor-acceptor dyes and ambipolar organic semiconductors. J Org Chem. 2017;82(23):12492–12502.
  • Bao WX, Billa MR, Kassireddy K, et al. Carbazole nematic liquid crystals. Liq Cryst. 2011;37(10):1289–1303.
  • Li SW, Yu CH, Ko CL, et al. Cyanopyrimidine-carbazole hybrid host materials for high-efficiency and low-efficiency roll-off TADF OLEDs. ACS Appl Mater Interfaces. 2018;10:12930–12936.
  • Hudson ZM, Wang Z, Helander MG, et al. N-Heterocyclic carbazole-based hosts for simplified single-layer phosphorescent OLEDs with high efficiency. Adv Mater. 2012;24(21):2922–2928.
  • Iguarbe V, Barberá J, Serrano JL. Functional Janus dendrimers containing carbazole with liquid crystalline, optical and electrochemical properties. Liq Cryst. 2020;47(2):301–308.
  • Wongsilarat C, Namuangruk S, Prachumrak N, et al. Solution processed blue-emitting and hole-transporting materials from truxene-carbazole-pyrene triads. Org Electron. 2018;57:352–358.
  • Hu G, Kitney SP, Billa MR, et al. A novel nematic tri-carbazole as a hole-transport material for solution-processed OLEDs. Liq Cryst. 2020. DOI: 10.1080/02678292.2020.1765262.
  • Tsoi WC, O’Neill M, Aldred MP, et al. Distributed bilayer photovoltaics based on nematic liquid crystal polymer networks. Chem Mater. 2007;19(23):5475–5484.
  • Woon KL, Aldred MP, Vlachos P, et al. Electronic charge transport in extended nematic liquid crystals. Chem Mater. 2006;18(9):2311–2317.
  • Wallow TI, Novak BM. Highly efficient and accelerated Suzuki aryl couplings mediated by phosphine-free palladium sources. J Org Chem. 1994;59(17):5034–5037.
  • Han W, Liu C, Jin ZL. In situ generation of palladium nanoparticles: a simple and highly active protocol for oxygen-promoted ligand-free Suzuki coupling reaction of aryl chlorides. Org Lett. 2007;9(20):4005–4007.
  • Kabalka GW, Namboodiri V, Wang L. Suzuki coupling with ligandless palladium and potassium fluoride. Chem Commun. 2001;(8):775. DOI: 10.1039/b101470f
  • Liu C, Ni Q, Bao F, et al. A simple and efficient protocol for a palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF. Green Chem. 2011;13(5):1260–1266.
  • Pavlishchuk VV, Addison AW. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solution at 25 °C. Inorg Chim Acta. 2000;298(1):97–102.
  • Ahmida MM, Eichhorn SH. Measurements and prediction of electronic properties of discotic triphenylenes and phthalocyanines. ECS Trans. 2010;25(26):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.