432
Views
22
CrossRef citations to date
0
Altmetric
Article

Thioether-linked azobenzene-based liquid crystal dimers exhibiting the twist-bend nematic phase over a wide temperature range

ORCID Icon, , &
Pages 641-652 | Received 07 Jul 2020, Accepted 21 Jul 2020, Published online: 25 Aug 2020

References

  • Ungar G, Feijoo JL, Keller A, et al. Simultaneous X-ray/DSC study of mesomorphism in polymers with a semiflexible mesogen. Macromolecules. 1990;23(14):3411–3416.
  • Šepelj M, Lesac A, Baumeister U, et al. Dimeric salicylaldimine-based mesogens with flexible spacers: parity-dependent mesomorphism. Chem Mater. 2006;18(8):2050–2058.
  • Sěpelj M, Lesac A, Baumeister U, et al. Intercalated liquid-crystalline phases formed by symmetric dimers with an α,ω-diiminoalkylene spacer. J Mater Chem. 2007;17(12):1154–1165.
  • Panov VP, Nagaraj M, Vij JK, et al. Spontaneous periodic deformations in nonchiral planar-aligned bimesogens with a nematic-nematic transition and a negative elastic constant. Phys Rev Lett. 2010;105(16):167801.
  • Schrӧder MW, Diele S, Pelzl G, et al. Different nematic phases and a switchable SmCP phase formed by homologues of a new class of asymmetric bent-core mesogens. J Mater Chem. 2003;13(8):1877–1882.
  • Yelamaggad CV, Shashikala IS, Li Q. Liquid crystal trimers composed of banana-shaped and rodlike anisometric segments: synthesis and characterization. Chem Mater. 2007;19(26):6561–6568.
  • Hann JL, Mandle RJ. Pentaerythritol Derived Tetrapode Exhibiting a Nematic‐Like Mesophase at Ambient Temperatures. ChemPhysChem. 2020;20(15):1941–1945.
  • Meyer RB. Structural Problems in Liquid Crystal Physics, Les Houches Summer School in Theoretical Physics 1973. In: Balian R, Weil G, editors. Molecular Fluids. Gordon and Breach. 1976. p. 271–343.
  • Dozov I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys Lett. 2011;56(2):247–253.
  • Memmer R. Liquid crystal phases of achiral banana-shaped molecules: a computer simulation study. Liq Cryst. 2002;29(4):483–496.
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84(3):031704.
  • Henderson PA, Imrie CT. Methylene-linked liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2011;38(11–12):1407–1414.
  • Šepelj M, Baumeister U, Ivšić T, et al. Effects of geometry and electronic structure on the molecular self-assembly of naphthyl-based dimers. J Phys Chem B. 2013;117(29):8918–8929.
  • Mandle RJ, Davis EJ, Lobato SA, et al. Synthesis and characterisation of an unsymmetrical, ether-linked, fluorinated bimesogen exhibiting a new polymorphism containing the NTB or ‘twist-bend’ phase. Phys Chem Chem Phys. 2014;16(15):6907–6915.
  • Mandle RJ, Davis EJ, Archbold CT, et al. Apolar bimesogens and the incidence of the twist–bend nematic phase. Chem Eur J. 2015;21(22):8158–8167.
  • Mandle RJ, Goodby JW. Dependence of Mesomorphic Behaviour of Methylene-Linked Dimers and the Stability of the NTB/NX Phase upon Choice of Mesogenic Units and Terminal Chain Length. Chem Eur J. 2016;22(27):9366–9374.
  • Sebastián N, López DO, Robles-Hernández B, et al. Dielectric, calorimetric and mesophase properties of 1′′-(2′,4-difluorobiphenyl-4′-yloxy)-9′′-(4-cyanobiphenyl-4′-yloxy)nonane: an odd liquid crystal dimer with a monotropic mesophase having the characteristics of a twist-bend nematic phase. Phys Chem Chem Phys. 2014;16(39):21391–21406.
  • Tamba MG, Salili SM, Zhang C, et al. A fibre forming smectic twist–bent liquid crystalline phase. RSC Adv. 2015;5(15):11207–11211.
  • Ahmed Z, Welch C, Mehl GH. The design and investigation of the self-assembly of dimers with two nematic phases. RSC Adv. 2015;5(113):93513–93521.
  • Mandle RJ, Voll CC, Lewis DJ, et al. Etheric bimesogens and the twist-bend nematic phase. Liq Cryst. 2016;43(1):13–21.
  • Mandle RJ, Archbold CT, Sarju JP, et al. The dependency of nematic and twist-bend mesophase formation on bend angle. Sci Rep. 2016;6(1):36682.
  • Dawood AA, Grossel MC, Luckhurst GR, et al. On the twist-bend nematic phase formed directly from the isotropic phase. Liq Cryst. 2016;43(1):2–12.
  • Dawood AA, Grossel MC, Luckhurst GR, et al. Twist-bend nematics, liquid crystal dimers, structure–property relations. Liq Cryst. 2017;44(1):106–126.
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist–bend nematic–nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dimer. J Am Chem Soc. 2016;138(16):5283–5289.
  • Paterson DA, Walker R, Abberley JP, et al. Azobenzene-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44(12–13):2060–2078.
  • Abberley JP, Storey JM, Imrie CT. Structure-property relationships in azobenzene-based twist-bend nematogens. Liq Cryst. 2019;46(13–14):2102–2114.
  • Ivšić T, Baumeister U, Dokli I, et al. Sensitivity of the NTB phase formation to the molecular structure of imino-linked dimers. Liq Cryst. 2017;44(1):93–105.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Commun. 2018;9(1):228.
  • Knežević A, Sapunar M, Buljan A, et al. Fine-tuning the effect of π–π interactions on the stability of the NTB phase. Soft Matter. 2018;14(42):8466–8474.
  • Watanabe K, Tamura T, Kang S, et al. Twist bend nematic liquid crystals prepared by one-step condensation of 4-(4-Pentylcyclohexyl) benzoic acid and alkyl diol. Liq Cryst. 2018;45(6):924–930.
  • Lesac A, Baumeister U, Dokli I, et al. Geometric aspects influencing N-NTB transition-implication of intramolecular torsion. Liq Cryst. 2018;45(7):1101–1110.
  • Arakawa Y, Komatsu K, Tsuji H. Twist-bend nematic liquid crystals based on thioether linkage. New J Chem. 2019;43(17):6786–6793.
  • Arakawa Y, Tsuji H. Selenium-linked liquid crystal dimers for twist-bend nematogens. J Mol Liq. 2019;289:111097.
  • Cruickshank E, Salamończyk M, Pociecha D, et al. Sulfur-linked cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2019;46(10):1595–1609.
  • Arakawa Y, Komatsu K, Inui S, et al. Thioether-linked liquid crystal dimers and trimers: the twist-bend nematic phase. J Mol Struct. 2020;1199:126913.
  • Arakawa Y, Ishida Y, Ether- TH. and Thioether-Linked Naphthalene-Based Liquid-Crystal Dimers: influence of Chalcogen Linkage and Mesogenic-Arm Symmetry on the Incidence and Stability of the Twist–Bend Nematic Phase. Chem Eur J. 2020;26(17):3767–3775.
  • Mandle RJ, Goodby JW. A Liquid Crystalline Oligomer Exhibiting Nematic and Twist-Bend Nematic Mesophases. ChemPhysChem. 2016;17(7):967–970.
  • Mandle RJ, Goodby JW. Progression from nano to macro science in soft matter systems: dimers to trimers and oligomers in twist-bend liquid crystals. RSC Adv. 2016;6(41):34885–34893.
  • Al-Janabi A, Mandle RJ, Goodby JW. Isomeric trimesogens exhibiting modulated nematic mesophases. RSC Adv. 2017;7(75):47235–47242.
  • Tuchband MR, Paterson DA, Salamończyk M, et al. Distinct differences in the nanoscale behaviors of the twist–bend liquid crystal phase of a flexible linear trimer and homologous dimer. Proc Natl Acad Sci USA. 2019;116(22):10698–10704.
  • Parsouzi Z, Babakhanova G, Rajabi M, et al. Pretransitional behavior of viscoelastic parameters at the nematic to twist-bend nematic phase transition in flexible n-mers. Phys Chem Chem Phys. 2019;21(24):13078–13089.
  • Mandle RJ, Al-Janabi A. Utilising Saturated Hydrocarbon Isosteres of para Benzene in the Design of Twist-Bend Nematic Liquid Crystals. ChemPhysChem. 2020;21(8):697–701.
  • Simpson FP, Mandle RJ, Moore JN, et al. Investigating the Cusp between the nano-and macro-sciences in supermolecular liquid-crystalline twist-bend nematogens. J Mater Chem C. 2017;5(21):5102–5110.
  • Wang Y, Singh G, Agra-Kooijman DM, et al. Room temperature heliconical twist-bend nematic liquid crystal. CrystEngComm. 2015;17(14):2778–2782.
  • Jansze SM, Martínez-Felipe A, Storey JMD, et al. A twist-bend nematic phase driven by hydrogen bonding. Angew Chem Int Ed. 2015;127(2):653–656.
  • Mandle RJ, Goodby JW. A Nanohelicoidal Nematic Liquid Crystal Formed by a Non-Linear Duplexed Hexamer. Angew Chem Int Ed. 2018;57(24):7096–7100.
  • Stevenson WD, An J, Zeng XB, et al. Twist-bend nematic phase in biphenylethane-based copolyethers. Soft Matter. 2018;14(16):3003–3011.
  • Chen D, Nakata M, Shao R, et al. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys Rev E. 2014;89(2):022506.
  • Sreenilayam SP, Panov VP, Vij JK, et al. The NTB phase in an achiral asymmetrical bent-core liquid crystal terminated with symmetric alkyl chains. Liq Cryst. 2017;44(1):244–253.
  • Xiang J, Li Y, Li Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27(19):3014–3018.
  • Xiang J, Varanytsia A, Minkowski F, et al. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc Natl Acad Sci USA. 2016;113(46):12925–12928.
  • Wang Y, Zheng ZG, Bisoyi HK, et al. Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase. Mater Horiz. 2016;3(5):442–446.
  • Mrukiewicz M, Iadlovska OS, Babakhanova G, et al. Wide temperature range of an electrically tunable selective reflection of light by oblique helicoidal cholesteric. Liq Cryst. 2019;46(10):1544–1550.
  • Prasad SK, Madhuri PL, Satapathy P, et al. A soft-bent dimer composite exhibiting twist-bend nematic phase: photo-driven effects and an optical memory device. Appl Phys Lett. 2018;112(25):253701.
  • Sridurai V, Kanakala MB, Yelamaggad CV, et al. Effect of gelation on the Frank elastic constants in a liquid crystalline mixture exhibiting a twist bend nematic phase. Soft Matter. 2019;15(48):9982–9990.
  • Gorecka E, Vaupotič N, Zep A, et al. A Twist‐Bend Nematic (NTB) Phase of Chiral Materials. Angew Chem Int Ed. 2015;54(35):10155–10159.
  • Walker R, Pociecha D, Storey JMD, et al. The Chiral Twist‐Bend Nematic Phase (N*TB). Chem Eur J. 2019;25(58):13329–13335.
  • Walker R, Pociecha D, Salamończyk M, et al. Supramolecular liquid crystals exhibiting a chiral twist-bend nematic phase. Mater Adv. 2020. DOI:10.1039/D0MA00302F.
  • Meyer C, Luckhurst GR, Dozov I. Flexoelectrically driven electroclinic effect in the twist-bend nematic phase of achiral molecules with bent shapes. Phys Rev Lett. 2013;111(6):067801.
  • Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4(1):2635.
  • Chen D, Porada JH, Hooper JB, et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc Natl Acad Sci USA. 2013;110(40):15931–15936.
  • Zhu C, Tuchband MR, Young A, et al. Resonant carbon K-edge soft X-ray scattering from lattice-free heliconical molecular ordering: soft dilative elasticity of the twist-bend liquid crystal phase. Phys Rev Lett. 2016;116(14):147803.
  • Stevenson WD, Ahmed Z, Zeng XB, et al. Molecular organization in the twist–bend nematic phase by resonant X-ray scattering at the Se K-edge and by SAXS, WAXS and GIXRD. Phys Chem Chem Phys. 2017;19(21):13449–13454.
  • Salamończyk M, Mandle RJ, Makal A, et al. Double helical structure of the twist-bend nematic phase investigated by resonant X-ray scattering at the carbon and sulfur K-edges. Soft Matter. 2018;14(48):9760–9763.
  • Cao Y, Feng J, Nallapaneni A, et al. Identification of New Assembly Mode in the Heliconical Nematic Phase via Tender Resonant X-ray Scattering. arXiv. 2019;arXiv:1907.11330.
  • Vanakaras AG, Photinos DJ. A molecular theory of nematic–nematic phase transitions in mesogenic dimers. Soft Matter. 2016;12(7):2208–2220.
  • Kumar A, Vanakaras AG, Photinos DJ. Polar Molecular Ordering in the N X Phase of Bimesogens and Enantiotopic Discrimination in the NMR Spectra of Rigid Prochiral Solutes. J Phys Chem B. 2017;121(47):10689–10703.
  • Vanakaras AG, Photinos DJ. Molecular dynamics simulations of nematic phases formed by cyano-biphenyl dimers. Liq Cryst. 2018;45(13–15):2184–2196.
  • Heist LM, Samulski ET, Welch C, et al. Probing molecular ordering in the nematic phases of para-linked bimesogen dimers through NMR studies of flexible prochiral solutes. Liq Cryst. 2020;1–16. DOI:10.1080/02678292.2019.1711214.
  • Samulski ET, Vanakaras AG, Photinos DJ. The twist bend nematic: a case of mistaken identity. Liq Cryst. 2020. in press.
  • Hartley GS. The cis-form of azobenzene. Nature. 1937;140(3537):281.
  • Tsutsumi O, Shiono T, Ikeda T, et al. Photochemical phase transition behavior of nematic liquid crystals with azobenzene moieties as both mesogens and photosensitive chromophores. J Phys Chem B. 1997;101(8):1332–1337.
  • Yamamoto T, Nishiyama I, Yokoyama H. Novel photoinduced phase transition observed in three-dimensional liquid-crystalline phase of azobenzene compound. Chem Lett. 2007;36(9):1108–1109.
  • Norikane Y, Hirai Y, Yoshida M. Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes. Chem Commun. 2011;47(6):1770–1772.
  • Hori R, Furukawa D, Yamamoto K, et al. Light-Driven Phase Transition in a Cubic-Phase-Forming Binary System Composed of 4-n-Docosyloxy-3′-nitrobiphenyl-4-carboxylic Acid and an Azobenzene Derivative. Chem Eur J. 2012;18(24):7346–7350.
  • Hada M, Yamaguchi D, Ishikawa T, et al. Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules. Nat Commun. 2019;10(1):4159.
  • Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003;425(6954):145.
  • Pang X, Lv JA, Zhu C, et al. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. Adv Mater. 2019;31(52):1904224.
  • Ube T. Development of novel network structures in crosslinked liquid-crystalline polymers. Polym J. 2019;51(10):983–988.
  • Shishido A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym J. 2010;42(7):525–533.
  • Fukuhara K, Nagano S, Hara M, et al. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nature Commun. 2014;5(1):3320.
  • Seki T. Light-directed alignment, surface morphing and related processes: recent trends. J Mater Chem C. 2016;4(34):7895–7910.
  • Hendrikx M, Schenning AP, Debije MG, et al. Light-triggered formation of surface topographies in azo polymers. Crystals. 2017;7(8):231.
  • Nagano S. Random Planar Orientation in Liquid-Crystalline Block Copolymers with Azobenzene Side Chains by Surface Segregation. Langmuir. 2018;35(17):5673–5683.
  • Choi SW, Izumi T, Hoshino Y, et al. Circular-polarization-induced enantiomeric excess in liquid crystals of an achiral, bent-shaped mesogen. Angew Chem Int Ed. 2006;45(9):1382–1385.
  • Vera F, Tejedor RM, Romero P, et al. Light-driven supramolecular chirality in propeller-like hydrogen-bonded complexes that show columnar mesomorphism. Angew Chem Int Ed. 2007;46(11):1873–1877.
  • Alaasar M, Poppe S, Dong Q, et al. Mirror symmetry breaking in cubic phases and isotropic liquids driven by hydrogen bonding. Chem Commun. 2016;52(96):13869–13872.
  • Vapaavuori J, Bazuin CG, Priimagi A. Supramolecular design principles for efficient photoresponsive polymer–azobenzene complexes. J Mater Chem C. 2018;6(9):2168–2188.
  • Ahmed HA, Hagar M, Aljuhani A. Mesophase behavior of new linear supramolecular hydrogen-bonding complexes. RSC Adv. 2018;8(61):34937–34946.
  • Alaasar M, Schmidt JC, Darweesh AF, et al. Azobenzene-based supramolecular liquid crystals: the role of core fluorination. J Mol Liq. 2020;310:113252.
  • Aya S, Salamon P, Paterson DA, et al. Fast-and-giant photorheological effect in a liquid crystal dimer. Adv Mater Interfaces. 2019;6(9):1802032.
  • Yoshioka J, Salamon P, Paterson DA, et al. Spherical-cap droplets of a photo-responsive bent liquid crystal dimer. Soft Matter. 2019;15(5):989–998.
  • Sreenilayam SP, Panarin YP, Vij JK, et al. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect. Nat Commun. 2016;7:11369.
  • Poppe M, Alaasar M, Lehman A, et al. Controlling the formation of heliconical smectic phases by molecular design of achiral bent-core molecules. J Mater Chem C. 2020;8(10):3316–3336.
  • Feng C, Feng J, Saha R, et al. Manipulation of the nanoscale heliconical structure of a twist-bend nematic material with polarized light. Phys Rev Res. 2020;2(3):032004(R).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.