521
Views
17
CrossRef citations to date
0
Altmetric
Article

Effect of the introduction of mono-functional monomer on the electro-optic properties of reverse-mode polymer stabilised cholesteric liquid crystal

, , , , &
Pages 1162-1174 | Received 06 Aug 2020, Accepted 07 Nov 2020, Published online: 09 Dec 2020

References

  • Hoppe CE, Galante MJ, Oyanguren PA, et al. Optical properties of novel thermally switched PDLC films composed of a liquid crystal distributed in a thermoplastic/thermoset polymer blend. Mat Sci Eng C-Mater. 2004;24(5):591–594.
  • Sun J, Xu S, Ren HW, et al. Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens. App Phys Lett. 2013;102(16):161106.
  • Liu SX, Li Y, Zhou PC, et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt Express. 2018;26(3):3394–3403.
  • Cupelli D, Nicoletta FP, Filpo GD, et al. Reverse mode operation polymer dispersed liquid crystal with a positive dielectric anisotropy liquid crystal. J Polym Sci Pol Phys. 2011;49(4):257–262.
  • Wang CH, Wu CC, Yang YT, et al. Reverse-mode polymer-stabilized dual-frequency cholesteric texture cell for dual mode operations. J Disp Technol. 2012;8(11):663–668.
  • Lu SY, Chien LC. A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection. App Phys Lett. 2007;91(13):131119.
  • Ren HW, Fan YH, Wu ST. Polymer network liquid crystals for tunable microlens arrays. J Phys D Appl Phys. 2004;37(3):400–403.
  • Ren HW, Wu ST. Tunable electronic lens using a gradient polymer network liquid crystal. App Phys Lett. 2003;82(1):22–24.
  • Ren HW, Xu S, Wu ST. Gradient polymer network liquid crystal with a large refractive index change. Opt Express. 2012;20(24):26464–26472.
  • Kang K, Chien LC, Sprunt S, et al. Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers. Liq Cryst. 2002;29(1):9–18.
  • Zhou L, Ma HP, Han C, et al. A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Adv. 2018;8(39):21690–21698.
  • Dierking I, Kosbar LL, Afzaliardakani A, et al. Network morphology of polymer stabilized liquid crystals. App Phys Lett. 1997;71(17):2454–2456.
  • Sharma V, Kumar P, Chinky, et al. Preparation and electrooptic study of reverse mode polymer dispersed liquid crystal: performance augmentation with the doping of nanoparticles and dichroic dye. J Appl Polym Sci. 2020;137(22):48745.
  • Sasaki Y, Ueda M, Le KV, et al. Polymer-stabilized micropixelated liquid crystals with tunable optical properties fabricated by double templating. Adv Mater. 2017;29(37):1703054.
  • Zhao XJ, Liu CL, Duan JZ, et al. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator. Opt Express. 2014;22(12):14757–14768.
  • Hikmet RA. Electrically induced light scattering from anisotropic gels. J Appl Phys. 1990;68(9):4406–4412.
  • Shiwaku T, Nakai A, Wang W, et al. Ordered structure of thermotropic liquid crystalline copolymers 2. Observation of annihilation kinetics of wedge disclinations. Liq Cryst. 1995;19(5):679–691.
  • Ahmad F, Jamil M, Jeon YJ. Reverse mode polymer stabilized cholesteric texture (PSCT) light shutter display–A short review. J Mol Liq. 2017;233:187–196.
  • Zhang Q, Zhang X, Yang L, et al. Polymer-stabilised cholesteric liquid-crystals as tunable light-reflector with low operating-voltage and energy consumption. Liq Cryst. 2020. DOI:10.1080/02678292.2020.1754940
  • Feng YF, Zhu ZK, Zhang HZ, et al. Chiral polymer network stabilised blue phase liquid crystals. Liq Cryst. 2020. DOI:10.1080/02678292.2020.1735545
  • Yadav S, Malik P. Thermal stability and electro-optical characteristics of polymer stabilised blue phase liquid crystalline materials: a role of polymer concentration. Liq Cryst. 2020. DOI:10.1080/02678292.2020.1795945
  • Yan XD, Zhou Y, Liu W, et al. Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilized liquid crystal devices. Liq Cryst. 2020;47(8):1131–1138.
  • Shen WB, Cao YP, Zhang CH, et al. Network morphology and electro-optical characterisations of epoxy-based polymer stabilised liquid crystals. Liq Cryst. 2020;47(4):481–488.
  • Hu XW, Zeng WJ, Yang WM, et al. Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals. Liq Cryst. 2019;46(2):185–192.
  • Lu HB, Yang L, Xia L, et al. Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal. Liq Cryst. 2020. DOI:10.1080/02678292.2020.1774085
  • Kasapoglu F, Cianga I, Yagci Y, et al. Photoinitiated cationic polymerization of mono-functional benzoxazine. J Polym Sci Pol Chem. 2003;41(21):3320–3328.
  • Hsieh P, Chen HP. Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers. Liq Cryst. 2015;42(2):216–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.