437
Views
5
CrossRef citations to date
0
Altmetric
Article

Liquid-crystalline behaviour and electrorheological effect of phthalocyanine-based ionic liquid crystals

, , , , &
Pages 1321-1330 | Received 06 Nov 2020, Accepted 03 Dec 2020, Published online: 28 Dec 2020

References

  • Vu CM, Nguyen VH, Bach QV. Influences of electric field strength on rheological properties of electrorheological fluid based on hollow poly (O-phenylenediamine coo-toluidine) dispersed on silicone oil. J Mol Liq. 2020;314:113762.
  • He K, Wen Q, Wang C, et al. The preparation and electrorheological behavior of bowl-like titanium oxide nanoparticles. Soft Matt. 2017;13:7677–7688.
  • Kutalkova E, Plachy T, Osicka J, et al. Electrorheological behavior of iron(II) oxalate micro-rods. RSC Adv. 2018;8:24773–24779.
  • Dong YZ, Seo Y, Choi HJ. Recent development of electro-responsive smart electrorheological fluids. Soft Matt. 2019;15:3473–3486.
  • Gehin C, Persello J, Charraut D, et al. Electrorheological properties and microstructure of silica suspensions. J Colloid Interf Sci. 2004;273:658–667.
  • Yin JB, Zhao XP. Preparation and enhanced electrorheological activity of Tio2 doped with chromium ion. Chem Mater. 2004;16:321–328.
  • Yin JB, Zhao XP. Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity. Nanotechnology. 2006;17:192–196.
  • Mrlík M, Icíková M, Plachý T, et al. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate). J Ind Eng Chem. 2018;57:104–112.
  • Lengálová A, Pavlínek V, Sáha P, et al. Electrorheology of polyaniline-coated inorganic particles in silicone oil. J Colloid Interf Sci. 2003;258:174–178.
  • Xia X, Yin J, Qiang P, et al. Electrorheological properties of thermo-oxidative polypyrrole nanofibers. Polymer. 2011;52:786–792.
  • Sari B, Yavas N, Makulogullari M, et al. Synthesis, electrorheology and creep behavior of polyindole/polyethylene composites. React Funct Polym. 2009;69:808–815.
  • Trlica J, Saha P, Quadrat O, et al. Electrorheological activity of polyphenylenediamine suspensions in silicone oil. Phys A. 2000;283:337–348.
  • Sim IS, Kim JW, Choi HJ, et al. Preparation and electrorheological characteristics of poly(p-phenylene)-based suspensions. Chem Mater. 2001;13:1243–1247.
  • Ballesteros B, Torre GL, Ehli C, et al. Single-wall carbon nanotubes bearing covalently linked phthalocyanines–photoinduced electron transfer. J Am Chem Soc. 2007;129:5061.
  • Chen Y, Qu S, Shi W, et al. Enhanced thermoelectric properties of copper phthalocyanine/singlewalled carbon nanotubes hybrids. Carbon. 2020;159:471–477.
  • Tang X, Du X, Bai L, et al. Liquid crystalline polyaniline and phthalocyaninebased polysiloxanes bearing lateral fluorosubstituted benzoic acid groups. Liq Cryst. 2017;44:1259–1268.
  • Di K, Zhu Y, Yang X, et al. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions. J Colloid Interf Sci. 2006;294:499–503.
  • Hong CH, Park BJ, Choi HJ. Comment on “Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions”. J Colloid Interf Sci. 2006;300:818–819.
  • Zhu Y, Ding S, Dong Y, et al. Electrorheological behavior of copper phthalocyanine-doped MCM-41 suspensions. Colloids Surf A: Phys Eng Aspect. 2003;220:131–138.
  • Cho MS, Cho YH, Choi HJ, et al. Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect. Langmuir. 2003;19:5875–5881.
  • Wu J, Zhang L, Xin X, et al. Electrorheological fluids with high shear stress based on wrinkly tin titanyl oxalate. ACS Appl Mater Interfaces. 2018;10:6785–6792.
  • Shen R, Wang X, Lu Y, et al. Polar-molecule-dominated electrorheological fluids featuring high yield stresses. Adv Mater. 2009;21:4631–4635.
  • Li J, Gong X, Chen S, et al. Giant electrorheological fluid comprising nanoparticles: carbon nanotube composite. J Appl Phys. 2010;107:093507.
  • Tang J, Radosz M, Shen Y. Poly(ionic liquid)s as optically transparent microwave-absorbing materials. Macromolecules. 2008;41:493–496.
  • Dong Y, Yin J, Zhao X. Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity. J Mater Chem A. 2014;2:9812–9819.
  • Yao N, Jamieson AM. Electrorheological behavior of side-chain liquid-crystalline polysiloxanes in nematic solvents. Macromolecule. 1997;30:5822–5831.
  • Kaneko K, Kawai T, Nakamura N. Electrorheological effect of “side-on” liquid crystalline polysiloxane. ChemPhysChem. 2008;9:2457–2460.
  • Bai L, Tang X, Gao Y, et al. Self-assembly of liquid crystalline polyethyleneimines bearing cholesteryl mesogens and ionic groups. New J Chem. 2018;42:3236–3245.
  • Cao W, Senthilkumar B, Causin V, et al. Influence of the ion size on the stability of the smectic phase of ionic liquid crystals. Soft Matt. 2020;16:411–420.
  • Feng C, Rajapaksha CPH, Cedillo JM, et al. Electroresponsive ionic liquid crystal elastomers. Macromol Rapid Commun. 2019;40:1900299.
  • Song Y, Wang J, Yan G, et al. Self-assembly and adjustable ion conducting behavior of graphene oxide liquid crystalline network membranes. Macromol Mater Eng. 2020;305:1900551.
  • Bai L, Tang X, Kong S, et al. Main-chain ionic liquid-crystalline polymers bearing quaternary phosphonium ions. Polym Adv Technol. 2018;29:3106–3113.
  • Meng F, Zhou N, Diao N, et al. Discotic liquid crystal derived from zinc tetraaminophthalocyanine and perfluorooctanoic acid. Smart Mater Struct. 2013;22:127002.
  • Pathak AK, Ameta C, Ameta R, et al. Microwave-assisted organic synthesis in ionic liquids. J Heterocycl Chem. 2016;53:1697–1705.
  • Zheng Y, Wang J, Tang X, et al. Liquid-crystalline behavior and ferroelectric property of viologen-based ionic liquid crystals. J Mol Liq. 2020;301:112369.
  • Kong S, Song Y, Bai L, et al. Supramolecular complexes based on liquid-crystalline polysiloxanes and copper phthalocyanine. Polym Int. 2019;68:377–384.
  • Georgescu R, Boscornea C, Calinescu I, et al. Raman, IR and UV-vis spectroscopic investigations of some substituted phthalocyanines. Rev Chim. 2015;66:1554–1557.
  • Belaabed B, Lamouri S, Naar N, et al. Polyaniline-doped benzene sulfonic acid/epoxy resin composites: structural, morphological, thermal and dielectric behaviors. Polym J. 2010;42:546–554.
  • Kong S, Wang X, Bai L, et al. Multi-arm ionic liquid crystals formed by pyridine-mesophase and copper phthalocyanine. J Mol Liq. 2019;288:111012.
  • Sosa-Vargas L, Nekelson F, Okuda D, et al. Liquid crystalline and charge transport properties of novel non-peripherally octasubstituted perfluoroalkylated phthalocyanines. J Mater Chem C. 2015;3:1757–1765.
  • Zhou J, Yan G, Wang J, et al. Self-assembly and ionic conductivity of phthalocyanine-containing liquid-crystalline compound films. Thin Solid Film. 2020;709:138148.
  • Nalwa HS, Dalton LR, Vasudevan P. Dielectric properties of copper-phthalocyanine polymer. Eur Polym J. 1985;21:943–947.
  • Yan X, Goodson T. High dielectric hyperbranched polyaniline materials. J Phys Chem B. 2006;110:14667.
  • Shubha LN, Rao PM. Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide-doped polyaniline composite. J Adv Dielectr. 2016;6:1650018.
  • Saravanan S, Mathai CJ, Anantharaman MR, et al. Dielectric and conductivity studies on cobalt phthalocyanine tetramers. J Appl Polym Sci. 2004;91:2529–2535.
  • Gercek B, Yavuz M, Yilmaz H, et al. Comparison of electrorheological properties of some polyaniline derivatives. Colloid Surf A: Physcochem Eng Aspect. 2007;299:124–132.
  • Liu B, Shaw MT. Electrorheology of filled silicone elastomers. J Rheol. 2001;45:641–657.
  • Wang X, Bai L, Kong S, et al. Star-shaped supramolecular ionic liquid crystals based on pyridinium salts. Liq Cryst. 2019;46:512–522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.