144
Views
2
CrossRef citations to date
0
Altmetric
Article

Kinetic and thermodynamic studies of phase transition from hexagonal to discotic liquid crystal in metal-free 1,4,8,11,15,18,22,25-octahexylphthalocyanine

&
Pages 1709-1722 | Received 30 Dec 2020, Accepted 28 Feb 2021, Published online: 09 Mar 2021

References

  • Alamri SN, Joraid AA, Al-Raqa SY. Structural and optical properties of thermally evaporated 1,4,8,11,15,18,22,25-octahexylphthalocyanine thin films. Thin Solid Films. 2006;510(1–2):265–270.
  • Joraid AA, Alamri SN, Al-Raqa SY, et al. The hexagonal to discotic phase transition in 1,4,8,11,15,18,22,25-octahexylphthalocyanine studied by differential scanning calorimetry. Liq Cryst. 2008;35(3):351–356.
  • Alamri SN, Joraid AA, Solieman AS, et al. Structural and optical properties of 1, 4, 8, 11, 15, 18, 22, 25-octahexylphthalocyanine: a comparison between thermally evaporated and spin-coated thin films. J Taibah Univ Sci. 2008;1(1):35–43.
  • Basova T, Hassan A, Durmus M, et al. Liquid crystalline metal phthalocyanines: structural organization on the substrate surface. Coord Chem Rev. 2016;310:131–153.
  • Zhou J, Yan G, Wang J, et al. Self-assembly and ionic conductivity of phthalocyanine-containing liquid-crystalline compound films. Thin Solid Films. 2020;709:138148.
  • Deibel C, Janssen D, Heremans P, et al. Charge transport properties of a metal-free phthalocyanine discotic liquid crystal. Org Electron. 2006;7(6):495–499.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887.
  • Jacob L, Gowda A, Kumar S, et al. Synthesis, thermal and photophysical studies of π-extended dibenzophenazine based discotic liquid crystals. J Mol Liq. 2020;320:114419.
  • Kumar S. Investigations on discotic liquid crystals. Liq Cryst. 2020;47(8):1195–1203.
  • Lehmann M, Dechant M. Click procedure of phthalocyanine star-shaped mesogens – the effect of size and spacer length. Liq Cryst. 2020;47(8):1214–1222.
  • Spiess HW. Improving organisation of discotics: annealing, shape, side groups, chirality. Liq Cryst. 2020;47(13):1880–1885.
  • Reheman A, Hu S, Cao L, et al. Liquid-crystalline behaviour and electrorheological effect of phthalocyanine-based ionic liquid crystals. Liq Cryst. 2020. DOI:https://doi.org/10.1080/02678292.2020.1861347
  • Joraid AA, Alhosuini IMA. Effect of heating rate on the kinetics and mechanism of crystallization in amorphous Se85Te10Pb5 glasses. Thermochim Acta. 2014;595:28–34.
  • Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.
  • Joraid AA, Okasha RM, Al‑Maghrabi MA, et al. Thermal degradation behavior of a new family of organometallic dendrimer. J Inorg Organomet Polym Mater. 2020;7(8):2937–2951.
  • Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry application to a phenolic plastic. J Polym Sci C. 1964;47(1):183–195.
  • Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):881–1886.
  • Flynn JH, Wall LA. Thermal analysis of polymer by thermogravemetric analysis. J Res Natl Bur Stand Sect A. 1966;70(6):487–523.
  • Martnez-Felipe A, Badia JD, Santonja-Blasco L, et al. A kinetic study of the formation of smectic phases in novel liquid crystal ionogens. Eur Polym J. 2013;49(6):1553–1563.
  • Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–176.
  • Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Thermal Anal. 1977;16(3):445–447.
  • Malek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;38:61–73.
  • Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355(1–2):239–253.
  • Criado JM. Kinetic analysis of DTG data from master curves. Thermochim Acta. 1978;24(1):186–189.
  • Mumbach GD, Alves JLF, Jcg DS, et al. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. 2019;200:112031. Energ Convers Manage.
  • Singh S, Chakraborty JP, Mondal MK. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel. 2020;259:116263.
  • Majumdar S, Sharma IG, Bidaye AC, et al. A study on isothermal kinetics of thermal decomposition of cobalt oxalate to cobalt. Thermochim Acta. 2008;473:45–49.
  • Joraid AA, Okasha RM, Rock CL, et al. A nonisothermal study of organoiron poly(alkynyl methacrylate) coordinated to dicobalt hexacarbonyl using advanced kinetics modelling. J Inorg Organomet Polym Mater. 2014;24(1):121–127.
  • Khan AS, Man Z, Bustam MA, et al. Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J Mol Liq. 2016;223:754–762.
  • Yuan X, He T, Cao H, et al. Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew Energy. 2017;107:489–496.
  • Sharma P, Uniyal P. Investigating thermal and kinetic parameters of lithium titanate formation by solid-state method. J Therm Anal Calorim. 2017;128(2):875–882.
  • Zhang W, Li Z, Shi L, et al. Methyltrichlorosilane modified hydrophobic silica aerogels and their kinetic and thermodynamic behaviors. J Sol-Gel Sci Techn. 2019;89(2):448–457.
  • Vasudev V, Ku X, Lin J. Pyrolysis of algal biomass: determination of the kinetic triplet and thermodynamic analysis. Bioresour Technol. 2020;317:124007.
  • Helliwell M, Teat SJ, Colesb SJ, et al. Temperature-resolved study of the structural behaviors of nickel octahexyl phthalocyanine up to the liquid crystal transition. Acta Cryst B. 2003;59(5):617–624.
  • Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application prediction. J Therm Anal Cal. 2007;89(2):479–490.
  • Roduit B, Hartmann M, Folly P, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim Acta. 2014;579:31–39.
  • Roduit B, Hartmann M, Folly P, et al. Kinetic analysis of solids of the quasi-autocatalytic decomposition type: SADT determination of low-temperature polymorph of AIBN. Thermochim Acta. 2018;89:119–126.
  • Joraid AA. Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim Acta. 2005;436(1–2):78–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.