190
Views
1
CrossRef citations to date
0
Altmetric
Article

Broadband reflection prepared by loading chiral dopants in white carbon black

, , , , , , & show all
Pages 1840-1849 | Received 03 Jan 2021, Accepted 09 Mar 2021, Published online: 06 Apr 2021

References

  • Zhang Q, Zhang XM, Yang L, et al. Polymer-stabilised cholesteric liquid-crystals as tunable light-reflector with low operating-voltage and energy consumption. Liq Cryst. 2020;47:1655–1662.
  • Hu XW, Zeng WJ, Yang WM, et al. Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals. Liq Cryst. 2019;46:185–192.
  • Lv JF, Ding C, Meng FY, et al. A tunable metamaterial absorber based on liquid crystal with the compact unit cell and the wideband absorption. Liq Cryst. 2021. DOI:https://doi.org/10.1080/02678292.2021.1876935.
  • Choi H, Kim J, Nishimura S, et al. Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors. Adv Mater. 2010;22:2680–2684.
  • Zou JY, Zhan T, Xiong JH, et al. Broadband wide-view pancharatnam-berry phase deflector. Opt Express. 2020;28:4921–4927.
  • Tan GJ, Huang YG, Li MC, et al. High dynamic range liquid crystal displays with a mini-LED backlight. Opt Express. 2018;26:16572–16584.
  • John VN, Varanakkottu SN, Varghese S. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation. Opt Materials. 2018;80:233–240.
  • Hsiao VKS, Lu C, He GS, et al. High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures. Opt Express. 2005;13:3787–3794.
  • Hu W, Chen M, Wang Q, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol-acrylate chemistry. Angew Chem. 2019;58:6698–6702.
  • White TJ, Natarajan LV, Bunning TJ, et al. Contribution of monomer functionality and additives to polymerization kinetics and liquid crystal phase separation in acrylate-based polymer-dispersed liquid crystals (PDLCs). Liq Cryst. 2007;34:1377–1385.
  • Ke Y, Zhou C, Zhou Y, et al. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv Funct Mater. 2018;28:1800113.
  • Azens A, Granqvist C. Electrochromic smart windows: energy efficiency and device aspects. J Solid State Electrochem. 2003;7:64–68.
  • Feng W, Zou L, Gao G, et al. Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis. Sol Energy Mater Sol Cells. 2016;144:316–323.
  • Granqvist CG. Oxide electrochromics: an introduction to devices and materials. Sol Energy Mater Sol Cells. 2012;99:1–13.
  • Ghosh A, Norton B, Duffy A. Measured overall heat transfer coefficient of a suspended particle device switchable glazing. Appl Energy. 2015;159:362–369.
  • Ikeda T. Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem. 2003;13(9):2037–2057.
  • Kim IC, Kim TH, Lee SH, et al. Extremely foldable and highly transparent nanofiber-based electrodes for liquid crystal smart devices. Sci Rep. 2018;8:11517.
  • Tang H, Jiang Y, Tang CW, et al. Grid optimization of large-area OLED lighting panel electrodes. J Disp Technol. 2016;12:605–609.
  • Piccolo A. Thermal performance of an electrochromic smart window tested in an environmental test cell. Energy Build. 2010;42:1409–1417.
  • Ren HW, Lin YH, Fan YH, et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal. Appl Phys Lett. 2005;86:141110.
  • Bacchiocchi C, Miglioli I, Arcioni A, et al. Order and dynamics inside H-PDLC nanodroplets: an ESR spin probe study. J Phys Chem B. 2009;11:5391–5402.
  • Yang H, Kikuchi H, Kajiyama T. Temperature dependent light transmission-light scattering switching of (homeotropic liquid crystalline polymer network/liquid crystals/chiral dopant) composite film. Liq Cryst. 2000;27:1695–1699.
  • Chen Q, Wang D, Gao H, et al. 3D nanomaterial silica aerogel via diffusion of chiral compound driven broadband reflection in chiral nematic liquid crystals. Liq Cryst. 2019;46:952–962.
  • Liu Y, Wang D, Gao H, et al. TiO2 nanorod arrays induced broad-band reflection in chiral nematic liquid crystals with photo-polymerization network. Liq Cryst. 2019;46:210–218.
  • Zhang HY, Tian SS, Wang Q, et al. Broaden reflection bandwidth of chiral nematic liquid crystals by chiral compound-loaded thermally responsive microcapsules. Liq Cryst. 2020. DOI:https://doi.org/10.1080/02678292.2020.1839977.
  • Liu SX, Li Y, Zhou PC, et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt Express. 2018;26:3394–3403.
  • Gordon RG. Criteria for choosing transparent conductors. MRS Bull. 2000;25:52–57.
  • Kwon JY, Jeong JK. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors. Semicond Sci Technol. 2015;30:024002.
  • Zhang LP, He WL, Yuan XT, et al. Broadband reflection characteristic of polymer-stabilised cholesteric liquid crystal with pitch gradient induced by a hydrogen bond. Liq Cryst. 2010;37:1275–1280.
  • Yokokoji O, Oiwa M, Koike T, et al. Synthesis of new chiral compounds for cholesteric liquid crystal display. Liq Cryst. 2008;35:995–1003.
  • Chanishvili A, Chilaya G, Petriashvili G, et al. Phototunable lasing in dye-doped cholesteric liquid crystals. Appl Phys Lett. 2003;83:5353–5355.
  • Li J, Wen CH, Gauza S, et al. Refractive indices of liquid crystals for display applications. J Disp Technol. 2005;1:51–61.
  • Wassei JK, Kaner RB. Graphene, a promising transparent conductor. Mater Today. 2010;13:52–1159.
  • Murray J, Ma D, Munday JN. Electrically controllable light trapping for self-powered switchable solar windows. ACS Photonics. 2016;4:1–7.
  • Binet C, Mitov M, Mauzac M. Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals. J Appl Phys. 2001;90:1730–1734.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24:6260–6276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.