222
Views
1
CrossRef citations to date
0
Altmetric
Article

Tight focusing of laser light using microlens array combined with radially polarised light converter

& ORCID Icon
Pages 230-239 | Received 03 Jul 2021, Accepted 13 Jul 2021, Published online: 29 Jul 2021

References

  • Zhan Q. Trapping metallic Rayleigh particles with radial polarization. Opt Express. 2004;12:3377–3382.
  • Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl Phys A. 2006;86:329–334.
  • Nesterov A, Niziev V. Laser beams with axially symmetric polarization. J Phys D: Appl Phys. 2000;33:1817–1822.
  • Ko S, Ting C, Fuh Y, et al. Polarization converters based on axially symmetric twisted nematic liquid crystal. Opt Express. 2010;18:3601–3607.
  • Quabis S, Dorn R, Eberler M, et al. Focusing light to a tighter spot optics communications. Opt Commun. 2000;179:1–7.
  • Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett. 2003;91:233901.
  • Yew E, Sheppard C. Tight focusing of radially polarized Gaussian and Bessel-Gauss beams. Opt Lett. 2007;32:3417–3419.
  • Kitamura K, Nishimoto M, Sakai K, et al. Needle-like focus generation by radially polarized halo beams emitted by photonic-crystal ring-cavity laser. Appl Phy Lett. 2012;101:2421.
  • Guo H, Weng X, Jiang M, et al. Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters. Opt Express. 2013;21:5363–5372.
  • Wang X, Ren H, Nah C. Linearly to radially polarized light conversion and tight focus. J Appl Phys. 2015;117:243101–243107.
  • Nersisyan S, Tabiryan N, Steeves DM, et al. Axial polarizers based on dichroic liquid crystals. J Appl Phys. 2010;108:033101–033106.
  • Wang X, Xu M, Ren H, et al. A polarization converter array using a twisted-azimuthal liquid crystal in cylindrical polymer cavities. Opt Express. 2013;21:16222–16230.
  • Wang X, Xu M, Ren H. Polarization converting textures of nematic liquid crystal in glass cavities. J Appl Phys. 2013;21:16222–16230.
  • Fuh Y, Ko S, Huang S, et al. Polarization-independent liquid crystal lens based on axially symmetric photoalignment. Opt Express. 2011;19:2294–2300.
  • He Z, Lee Y, Chanda D, et al. Adaptive liquid crystal microlens array enabled by two-photo polymerization. Opt Express. 2018;26:21184–21193.
  • Ren H, Zhou Z, Lan C. Tight focusing of laser light using a polarization converter and an adaptive lens. Opt Eng. 2018;57:067106–067111.
  • Chen Y, Fuh A, Liu C, et al. Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film. J Phys D: Appl Phys. 2011;44:215304–215309.
  • Xu M, Park K, Nah C, et al. Liquid crystal polarization converters using circular-buffed polystyrene film. Jpn J Appl Phys. 2011;50:102205–102209.
  • Ren H, Lin Y, Wu S. Linear to axial or radial polarization conversion using a liquid crystal gel. Appl Phys Lett. 2006;89:051114–051117.
  • Ko S, Tzeng Y, Ting C, et al. Axially symmetric liquid crystal devices based on double-side photo-alignment. Opt Express. 2008;16:19643–19648.
  • Xu M, Wang Z, Lu HB, et al. Liquid crystal polarisation converter arrays based on microholes patterned hydrophobic layers. Liq Cryst. 2021;1–7. DOI:https://doi.org/10.1080/02678292.2021.1903107
  • Li Z, Xu M, Lu H, et al. A polyvinyl alcohol microlens array with controlled curvature on discontinuous hydrophobic surface. J Mol Liq. 2020;319:114372.
  • Xu M, Zhou Z, Wang Z, et al. Self-assembled microlens array with controllable focal length formed on a selective wetting surface. ACS Appl Mater Inter. 2020;12:7826–7832.
  • Xue Y, Zhou Z, Xu M, et al. Tunable liquid crystal microlens array with negative and positive optical powers based on a self-assembled polymer convex array. Liq Cryst. 2021;1–9. DOI:https://doi.org/10.1080/02678292.2021.1900435
  • Li Z, Lu H, Ding Y, et al. Low voltage liquid crystal microlens array based on polyvinyl alcohol convex induced vertical alignment. Liq Cryst. 2020;48:248–254.
  • Xue Y, Li S, Xu M, et al. Self-assembled photocurable polymer biconvex microlens array based on double-faced discontinuous hydrophobic surface. Opt Laser Technol. 2021;143:107329–107336.
  • Yeh P, Gu C. Optics of liquid crystal displays. New York: Wiley; 1999.
  • Watanabe K, Horiguchi N, Kano H. Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination. Appl Opt. 2007;46:4985–4990.
  • Hecht E. Optics. 4th ed. San Francisco: Addison-Wesley; 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.