394
Views
7
CrossRef citations to date
0
Altmetric
Article

Folding-induced in-plane birefringence in homeotropically aligned graphene-oxide liquid crystal films formed by solution shear

, , , &
Pages 407-417 | Received 07 Jul 2021, Accepted 26 Aug 2021, Published online: 15 Sep 2021

References

  • Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano. 2011;5:2908–2915.
  • Song W, Kinloch IA, Windle AH. Nematic liquid crystallinity of multiwall carbon nanotubes. Science. 2003;302(5649):1363.
  • Weiss V, Thiruvengadathan R, Regev O. Preparation and characterization of a carbon nanotube−lyotropic liquid crystal composite. Langmuir. 2006;22(3):854–856.
  • Zakri C. Carbon nanotubes and liquid crystalline phases. Liq Cryst Today. 2007;16(1):1–11.
  • Zhang S, Kumar S. Carbon nanotubes as liquid crystals. Small. 2008;4(9):1270–1283.
  • Puech N, Grelet E, Poulin P, et al. Nematic droplets in aqueous dispersions of carbon nanotubes. Phys Rev E. 2010;82(2):020702.
  • Zamora-Ledezma C, Blanc C, Puech N, et al. Conductivity anisotropy of assembled and oriented carbon nanotubes. Phys Rev E. 2012;85(1):019901.
  • Behabtu N, Lomeda JR, Green MJ, et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol. 2010;5(6):406–411.
  • Aboutalebi SH, Gudarzi MM, Zheng QB, et al. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater. 2011;21:2978–2988.
  • Zakri C, Blanc C, Grelet E, et al. Liquid crystals of carbon nanotubes and graphene. Philos Trans R Soc A. 2013;371(1988):20120499.
  • Paredes JI, Villar-Rodil S, Martínez-Alonso A, et al. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24:10560–10564.
  • Kim JE, Han TH, Lee SH, et al. Graphene oxide liquid crystals. Angew Chem Int Ed. 2011;50:3043–3047.
  • Konios D, Stylianakis MM, Stratakis E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci. 2014;430:108–112.
  • Dan B, Behabtu N, Martinez A, et al. Liquid crystals of aqueous, giant graphene oxide flakes [https://doi.org/10.1039/C1SM06418E]. Soft Matter. 2011;7(23):11154–11159.
  • Lin X, Shen X, Zheng Q, et al. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano. 2012;6:10708–10719.
  • Cote LJ, Kim F, Huang J. Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc. 2009;131(3):1043–1049.
  • Kim J, Cote LJ, Huang J. Two dimensional soft material: new faces of graphene oxide. Acc Chem Res. 2012;45(8):1356–1364.
  • Wang YG, Chen HR, Wen XM, et al. A highly efficient graphene oxide absorber forQ-switched Nd:GdVO4lasers. Nanotechnology. 2011;22(45):455203.
  • Shen T-Z, Hong S-H, Lee B, et al. Bottom-up and top-down manipulations for multi-order photonic crystallinity in a graphene-oxide colloid. NPG Asia Mater. 2016;8(8):e296–e296.
  • Shen T-Z, Hong S-H, Song J-K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat Mater. 2014;13:394–399.
  • Ahmad RTM, Hong S-H, Shen T-Z, et al. Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions. Opt Express. 2015;23(4):4435–4440.
  • Kim MJ, Park JH, Yamamoto J, et al. Electro-optic switching with liquid crystal graphene. PSS (RRL). 2016;10(5):397–403.
  • Yoon Y, Lee K, Kwon S, et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano. 2014;8(5):4580–4590.
  • Xu Z, Sun H, Zhao X, et al. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater. 2013;25(2):188–193.
  • Akbari A, Sheath P, Martin ST, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat Commun. 2016;7:10891.
  • Diao Y, Tee BCK, Giri G, et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater. 2013;12(7):665–671.
  • Jalili R, Aboutalebi SH, Esrafilzadeh D, et al. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano. 2013;7:3981–3990.
  • Wang B, Liu J, Zhao Y, et al. Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance. ACS Appl Mater Interfaces. 2016;8:22316–22323.
  • Yang X, Guo C, Ji L, et al. Liquid crystalline and shear-induced properties of an aqueous solution of graphene oxide sheets. Langmuir. 2013;29:8103–8107.
  • Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.
  • Becerril HA, Roberts ME, Liu Z, et al. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv Mater. 2008;20(13):2588–2594.
  • Liu Z, Becerril HA, Roberts ME, et al. Experimental study and statistical analysis of solution-shearing processed organic transistors based on an asymmetric small-molecule semiconductor. IEEE Trans Electron Devices. 2009;56(2):176–185.
  • Nakayama M, Kajiyama S, Nishimura T, et al. Liquid-crystalline calcium carbonate: biomimetic synthesis and alignment of nanorod calcite [https://doi.org/10.1039/C5SC01820J]. Chem Sci. 2015;6(11):6230–6234.
  • Hong S-H, Shen T-Z, Song J-K. Shear-induced assembly of graphene oxide particles into stripes near surface. Liq Cryst. 2018;45:1303–1311.
  • Chen J, Yao B, Li C, et al. An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–229.
  • Onsager L. The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci. 1949;51(4):627–659.
  • Murayama M, Howe JM, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science. 2002;295(5564):2433–2435.
  • Jagodzinski H. Points, lines and walls in liquid crystals, magnetic systems and various ordered media by M. Kléman. Acta Cryst A. 1984;40(3):309–310.
  • Tardani F, Neri W, Zakri C, et al. Shear rheology control of wrinkles and patterns in graphene oxide films. Langmuir. 2018;34:2996–3002.
  • Guo F, Kim F, Han TH, et al. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano. 2011;5:8019–8025.
  • Luo Y, Braggin GA, Olson GT, et al. Nematic order drives macroscopic patterns of graphene oxide in drying drops. Langmuir. 2014;30:14631–14637.
  • Patra N, Wang B, Král P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 2009;9(11):3766–3771.
  • Tong L, Qi W, Wang M, et al. Long-range ordered graphite oxide liquid crystals [https://doi.org/10.1039/C4CC01347F]. Chem Commun. 2014;50:7776–7779.
  • Jiang Y, Guo F, Xu Z, et al. Artificial colloidal liquid metacrystals by shearing microlithography. Nat Commun. 2019;10:4111.
  • Poulin P, Jalili R, Neri W, et al. Superflexibility of graphene oxide. PNAS. 2016;113:11088–11093.
  • Kundu S, Grecov D, Ogale AA, et al. Shear flow induced microstructure of a synthetic mesophase pitch. J Rheol. 2009;53(1):85–113.
  • Lin J, Li P, Liu Y, et al. The origin of the sheet size predicament in graphene macroscopic papers. ACS Nano. 2021;15(3):4824–4832.
  • Wahlstrom EE. Optical crystallography. Hoboken (NY): Wiley; 1979.
  • Kravets VG, Marshall OP, Nair RR, et al. Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels. Opt Express. 2015;23(2):1265–1275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.