1,001
Views
6
CrossRef citations to date
0
Altmetric
Invited Articles

Chemical and physical aspects of recent bent-shaped liquid crystals exhibiting chiral and achiral mesophases

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1078-1146 | Received 17 Sep 2021, Published online: 14 Mar 2022

References

  • Takezoe H, Eremin A. Bent-shaped liquid crystals: structures and physical properties. Boca Raton: CRC Press; 2017. DOI:https://doi.org/10.1201/9781315372723.
  • Vorländer D, Apel A. Die Richtung der Kohlen-stoff-Valenzen in Benzolabkommlingen (II.). Ber Dtsch Chem Ges. 1932;65:1101–1109.
  • Niori T, Sekine T, Watanabe J, et al. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J Mater Chem. 1996;6:1231–1233.
  • Pelzl G, Weissflog W. Mesophase behaviour at the borderline between calamitic and “banana-shaped” mesogens: thermotropic liquid crystals recent advances. Springer Netherlands; 2007. p. 1–58.
  • Pratibha R, Madhusudana NV, Sadashiva BK. An orientational transition of bent-core molecules in an anisotropic matrix. Science. 2000;288:2184–2187.
  • Reddy RA, Tschierske C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J Mater Chem. 2006;16:907–961.
  • Alaasar M. Azobenzene-containing bent-core liquid crystals: an overview. Liq Cryst. 2016;43:2208–2243.
  • Ting TX, Sarjadi MS, Rahman ML. Influences of central units and terminal chains on the banana-shaped liquid crystals. Crystals. 2020;10:857.
  • Le KV, Takezoe H, Araoka F. Chiral superstructure mesophases of achiral bent-shaped molecules – hierarchical chirality amplification and physical properties. Adv Mater. 2017;29:1602737.
  • Ros MB, Serrano JL, de La FMR, et al. Banana-shaped liquid crystals: a new field to explore. J Mater Chem. 2005;15:5093–5098.
  • Etxebarria J, Ros MB. Bent-core liquid crystals in the route to functional materials. J Mater Chem. 2008;18:2919–2926.
  • Hird M. Banana-shaped and other bent-core liquid crystals. Liq Cryst Today. 2005;14:9–21.
  • Takezoe H, Takanishi Y. Bent-core liquid crystals: their mysterious and attractive World. Jpn J Appl Phys. 2006;45:597–625.
  • Pelzl G, Diele S, Weissflog W. Banana-shaped compounds-a new field of liquid crystals. Adv Mater. 1999;11:707–724.
  • Eremin A, Jákli A. Polar bent-shape liquid crystals-from molecular bend to layer splay and chirality. Soft Matter. 2013;9:615–637.
  • Sadashiva BK. Molecular structure and chiral liquid crystalline phases. Pramana. 1999;53:213–222.
  • Sadashiva BK, Murthy HNS, Dhara S. Effect of lateral substituents on the mesophases formed by some achiral banana-shaped molecules. Liq Cryst. 2001;28:483–487.
  • Shubashree S, Sadashiva BK, Dhara S. Banana-shaped mesogens: effect of 2-methylresorcinol as the central unit on the mesomorphic properties of five-ring esters. Liq Cryst. 2002;29:789–797.
  • Dhara S, Araoka F, Lee M, et al. Kerr constant and third-order nonlinear optic susceptibility measurements in a liquid crystal composed of bent-shaped molecules. Phys Rev E. 2008;78:050701(R).
  • Guo L, Dhara S, Sadashiva BK. Polar switching in the smectic-AdPA phase composed of asymmetric bent-core molecules. Phys Rev E. 2010;81:011703.
  • Sasaki Y, Ema K, Le KV, et al. Calorimetric study of the effect of bent-shaped dopant molecules on the critical behavior at the nematic-smectic-Ad phase transition. Phys Rev E. 2011;83:061701.
  • Sasaki Y, Ema K, Le KV, et al. Critical behavior at transitions from uniaxial to biaxial phases in a smectic liquid-crystal mixture. Phys Rev E. 2010;82:011709.
  • Reddy RA, Sadashiva BK, Dhara S. Banana-shaped mesogens: observation of a direct transition from the antiferroelectric B2 to nematic phase. Chem Commun. 2001;1972–1973. DOI:https://doi.org/10.1039/b106458b
  • Le KV, Dhara S, Sadashiva BK. Characterization of nematic phase of banana liquid crystal. Jpn J Appl Phys. 2006;45:L1013.
  • Tanaka S, Dhara S, Sadashiva BK. Alternating twist structures formed by electroconvection in the nematic phase of an achiral bent-core molecule. Phys Rev E. 2008;77:041708.
  • Sathyanarayana P, Sadashiva BK, Dhara S. Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules. Soft Matter. 2011;7:8556–8560.
  • Sathyanarayana P, Radhika S, Sadashiva BK. Structure-property correlation of a hockey stick-shaped compound exhibiting N-SmA-SmCa phase transitions. Soft Matter. 2012;8:2322–2327.
  • Jákli A, Lavrentovich OD, Selinger JV. Physics of liquid crystals of bent-shaped molecules. Rev Mod Phys. 2018;90:045004.
  • Meyer RB. Piezoelectric effects in liquid crystals. Phys Rev Lett. 1969;22:918–921.
  • Buka A, Éber N. Flexoelectricity in liquid crystals: theory, experiments and applications. London: Imperial College Press; 2012.
  • Dozov I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys Lett. 2001;56:247–253.
  • Lubensky TC, Radzihovsky L. Theory of bent-core liquid-crystal phases and phase transitions. Phys Rev E. 2002;66:031704.
  • Brand HR, Pleiner H. Macroscopic behavior of non- polar tetrahedratic nematic liquid crystals. Eur Phys J E. 2010;31:37–50.
  • Brand HR, Pleiner H, PE C. Tetrahedratic cross-couplings: novel physics for banana liquid crystals. Phys A Stat Mech Appli. 2005;351:189–197.
  • Ostapenko T, Wiant DB, Sprunt SN, et al. Magnetic-field induced isotropic to nematic liquid crystal phase transition. Phys Rev Lett. 2008;101:247801.
  • Wiant D, Neupane K, Sharma S, et al. Observation of a possible tetrahedratic phase in a bent-core liquid crystal. Phys Rev E. 2008;77:617010.
  • Efrati E, Irvine WTM. Orientation-dependent handedness and chiral design. Phys Rev X. 2014;4:011003.
  • Ocak H, Eran BB, Nuray S, et al. Extraordinary magnetic field effects on the LC phases of homochiral and racemic 4-cyanoresorcinol-based diamagnetic bent-core mesogens. J. Mater Chem. C. 2021;9:1895–1910.
  • Bisi F, Rosso R, Virga EG, et al. Polar steric interactions for V-shaped molecules. Phys Rev E. 2008;78:011705.
  • Osipov MA, Pajak G. Molecular theory of proper ferroelectricity in bent-core liquid crystals. Eur Phys J E. 2014;37:79.
  • Roy A, Madhusudana N, Toledano P, et al. Longitudinal spontaneous polarization and longitudinal electroclinic effect in achiral smectic phases with bent-shaped molecules. Phys Rev Lett. 1999;82:1466–1469.
  • Lintuvuori JS, Yu G, Walker M, et al. Emergent chirality in achiral liquid crystals: insights from molecular simulation models of the behaviour of bent-core mesogens. Liq Cryst. 2018;45:1996–2009.
  • Dong X, Wang M, He Q, et al. Atomistic liquid crystalline structures of discotic bent-core-like mesogens formed by hydrogen bonding and interchain interactions. J Mol Model. 2020;26:308.
  • Aliev MA, Ugolkova EA, Kuzminyh NY. Phase diagram of a model melt of bent-core molecules. Liq Cryst. 2021;48:441–461.
  • Lansac Y, Maiti PK, Clark NA, et al. Phase behavior of bent-core molecules. Phys Rev E. 2003;67:011703.
  • Xu J, Selinger R, Selinger J, et al. Monte carlo simulation of liquid-crystal alignment and chiral symmetry-breaking. J Chem Phys. 2001;115:4333–4338.
  • Peláez J, Wilson MR. Atomistic simulations of a thermotropic biaxial liquid crystal. Phys Rev Lett. 2006;97:267801.
  • Peroukidis SD, Vanakaras AG, Photinos DJ. Molecular simulation of hierarchical structures in bent-core nematics. Phys Rev E. 2011;84:010702(R).
  • Madhusudana NV. Two-state model for nematic liquid crystals made of bent-core molecules. Phys Rev E. 2017;96:022710.
  • Patranabish S, Wang Y, Sinha A, et al. One-dimensional theoretical analysis of coupling and confinement effects on the cybotactic clusters of bent-core nematic liquid crystals. Phys Rev E. 2019;99:012703.
  • Xu J, Ye F, Zhang P. A tensor model for nematic phases of bent-core molecules based on molecular theory. Multiscale Model Simul. 2018;16:1581–1602.
  • Selinger JV. Interpretation of saddle-splay and the Oseen-Frank free energy in liquid crystals. Liq Cryst Rev. 2018;6:129–142.
  • Madhusudana NV. Simple model for the stripe phase in compounds with bent-core molecules which exhibit a lower-temperature ferroelectric smectic-A phase. Phys Rev E. 2019;100:022706.
  • Madhusudana NV. Some geometrical aspects of packing of bent-core molecules in the triclinic smectic-Cg liquid crystals and simple models of the modulated SmCgmod phase. Phys Rev E. 2021;103:022704.
  • Dozov I, Meyer C. Analogy between the twist-bend nematic and the smectic A phases and coarse-grained description of the macroscopic NTB properties. Liq Cryst. 2017;44:4–23.
  • Meyer C, Dozov I. Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase. Soft Matter. 2016;12:574–580.
  • Rosseto MP, Evangelista LR, Simonário PS, et al. Coarse-grained model of the nematic twist-bend phase from a stable state elastic energy. Phys Rev E. 2020;101:012702.
  • Longa L, Tomczyk W. Twist-bend nematic phase from the landau-de gennes perspective. J Phys Chem C. 2020;124:22761–22775.
  • Tschierske C, Photinos DJ. Biaxial nematic phases. J Mater Chem. 2010;20:4263–4294.
  • Picken SJ, Dingemans TJ, Madsen LA, et al. Uniaxial to biaxial nematic phase transition in a bent-core thermotropic liquid crystal by polarising microscopy. Liq Cryst. 2012;39:19–23.
  • Harden J, Mbanga B, Eber N, et al. Giant flexoelectricity of bent-core nematic liquid crystals. Phys Rev Lett. 2006;97:157802.
  • Ghosh S, Begum N, Turlapati S, et al. Ferroelectric-like switching in the nematic phase of four-ring bent-core liquid crystals. J Mater Chem C. 2014;2:425–431.
  • Shanker G, Nagaraj M, Kocot A, et al. Nematic phases in 1,2,4-oxadiazole-based bent-core liquid crystals: is there a ferroelectric switching? Adv Funct Mater. 2012;22:1671–1683.
  • Tanaka S, Dhara S, Sadashiva BK, et al. Alternating twist structures formed by electroconvection in the nematic phase of an achiral bent-core molecule. Phys Rev E. 2008;77:041708.
  • Bailey C, Csorba KF, Gleeson JT, et al. Rheological properties of bent-core liquid crystals. Soft Mater. 2009;5:3618–3622.
  • Shen D, Diele S, Pelz G, et al. Designing banana-shaped liquid crystals without Schiff’s base units: m-terphenyls, 2,6-diphenylpyridines and V-shaped tolane derivatives. J Mater Chem. 1999;9:661–672.
  • Kumar S, Gowda AN. The chemistry of bent-core molecules forming nematic liquid crystals. Liq Cryst Rev. 2015;3:99–145.
  • Kaur S. Elastic properties of bent-core nematic liquid crystals: the role of the bend angle. Liq Cryst. 2016;43:2277–2284.
  • Gleeson HF, Kaur S, Gortz V, et al. The nematic phases of bent-core liquid crystals. ChemPhysChem. 2014;15:1251–1260.
  • Vita F, Adamo FC, Francescangeli O. Polar order in bent-core nematics: an overview. J Mol Liq. 2018;267:564–573.
  • Jákli A. Liquid crystals of the twenty-first century-nematic phase of bent-core molecules. Liq Cryst Rev. 2013;1:65–82.
  • Mohiuddin G, Punjani V, Pal SK. Three‐ring‐based room‐temperature bent‐core nematic compounds: synthesis and characterization. ChemPhysChem. 2015;16:2739–2744.
  • Gowda AN, Kumar S. Ethylenedioxythiophene as a novel central unit for bent-core liquid crystals. Liq Cryst. 2016;43:1721–1731.
  • Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater. 2002;14:99–117.
  • Hulvat JF, Stupp SI. Liquid-crystal templating of conducting polymers. Angew Chem Int Ed. 2003;42:778–781.
  • Apperloo JJ, Groenendaal LB, Verheyen H, et al. Optical and redox properties of a series of 3,4-ethylenedioxythiophene oligomers. Chem Eur J. 2002;8:2384–2396.
  • Kumar A, Reynolds JR. Soluble alkyl-substituted poly(ethylenedioxythiophenes) as electrochromic materials. Macromolecules. 1996;29:7629–7630.
  • Addis J, Kaur S, Binks DJ, et al. Second-harmonic generation and the influence of flexoelectricity in the nematic phases of bent-core oxadiazoles. Liq Cryst. 2016;43:1315–1332.
  • Wiant DB, Gleeson JT, Éber N, et al. Non-standard electroconvection in a bent core nematic. Phys Rev E. 2005;72:041712.
  • Tanaka S, Takezoe H, Éber N, et al. Electroconvection in nematic mixtures of bent-core and calamitic molecules. Phys Rev E. 2009;80:021702.
  • Éber N, Xiang Y, Buka Á. Bent core nematics as optical gratings. J Mol Liq. 2018;267:436–444.
  • Xiang Y, Jing HZ, Zhang ZD, et al. Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal. Phys Rev Appl. 2017;7:064032.
  • Xiang Y, Jing H, Sun W, et al. Topological defects arrays and control of electro-convections in periodically photo-aligned bent-core nematics. J Mol Liq. 2020;318:114058.
  • Paul MK, Saha SK, Kalita G, et al. Low-temperature nematic phase in azo functionalised reactive hockey stick mesogens possessing lateral methyl group. Dyes Pigm. 2020;173:107233.
  • Begum N, Kaur S, Xiang Y, et al. Photoswitchable bent-core nematic liquid crystals with methylated azobenzene wing exhibiting optic-field-enhanced fréedericksz transition effect. J Phys Chem C. 2020;124:874–885.
  • Turlapati S, BN S, Vishwakarma VK, et al. Influence of lateral methyl/chloro substituents on the liquid crystalline and photoswitching behaviour of bent-core mesogens bearing azobenzene wings: synthesis and characterization. New J Chem. 2020;44:5731–5738.
  • Reddy RA, Sadashiva BK, Baumeister U. Liquid crystalline properties of unsymmetrical bent-core compounds containing chiral moieties. J Mater Chem. 2005;15:3303–3316.
  • Mathews M, Zola RS, Yang DK, et al. Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals. J Mater Chem. 2011;21:2098–2103.
  • Jo S-Y, Kim B-C, Jeon S-W, et al. Enhancement of the helical twisting power with increasing the terminal chain length of nonchiral bent-core molecules doped in a chiral nematic liquid crystal. RSC Adv. 2017;7:1932–1935.
  • Kim B-C, Walker M, Jo S-Y, et al. Effect of terminal chain length on the helical twisting power in achiral bent-core molecules doped in a cholesteric liquid crystal. RSC Adv. 2018;8:1292–1295.
  • Vries AD. Evidence for the existence of more than one type of nematic phase. Mol Cryst Liq Cryst. 1970;10:31–35.
  • Vries AD. X-ray photographic studies of liquid crystals i. a cybotactic nematic phase. Mol Cryst Liq Cryst. 1970;10:219–236.
  • Stojadinovic S, Adorjan A, Sprunt S, et al. Dynamics of the nematic phase of a bent-core liquid crystal. Phys Rev E. 2002;66:060701(R).
  • Domenici V, Veracini CA, Zalar B. How do banana-shaped molecules get oriented (if they do) in the magnetic field? Soft Matter. 2005;1:408–410.
  • Francescangeli O, Vita F, Samulski ET. The cybotactic nematic phase of bent-core mesogens: state of the art and future developments. Soft Matter. 2014;10:7685–7691.
  • Mohiuddin G, Begum N, Rao NVS, et al. Observation of disordered mesomorphism in three-ring-based highly polar bent-core molecules: design, synthesis and characterisation. Liq Cryst. 2017;44:2247–2258.
  • Alaasar M, Poppe S, Tschierske C. Cybotactic nematic phases of photoisomerisable hockey-stick liquid crystals. Liq Cryst. 2017;44:729–737.
  • Monika M, Prasad V, Nagaveni NG. Hockey stick-shaped azo compounds: effect of linkage groups and their direction of linking on mesomorphic properties. Liq Cryst. 2015;42:1490–1505.
  • Prasad V, Gowdru NN, Manjunath M. Thermally stable azo-substituted bent-core nematogens: observation of chiral domains in the nematic mesophases composed of smectic nano clusters. Liq Cryst. 2018;45:666–679.
  • Kaur S, Tian L, Liu H, et al. The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle. J Mater Chem C. 2013;1:2416–2425.
  • Seltmann J, Marini A, Mennucci B, et al. Nonsymmetric bent-core liquid crystals based on a 1,3,4-thiadiazole core unit and their nematic mesomorphism. Chem Mater. 2011;23:2630–2636.
  • Lehmann M, Seltmann J, Auer AA, et al. Synthesis and mesomorphic properties of new V-shaped shape-persistent nematogens containing a thiazole or a thiadiazole bending unit. J Mater Chem. 2009;19:1978–1988.
  • Han J, Chang XY, Zhu LR, et al. Synthesis and liquid crystal properties of a new class of calamitic mesogens based on substituted 2,5‐diaryl‐1,3,4‐thiadiazole derivatives with wide mesomorphic temperature ranges. Liq Cryst. 2008;35:1379–1394.
  • Aldred MP, Vlachos P, Dong D, et al. Heterocyclic reactive mesogens: synthesis, characterisation and mesomorphic behaviour. Liq Cryst. 2005;32:951–965.
  • Parra ML, Elgueta EY, Ulloa JA, et al. Columnar liquid crystals based on amino-1,3,4-thiadiazole derivatives. Liq Cryst. 2012;39:917–925.
  • Saha SK, Paul MK, Chandran A, et al. Low-temperature nematic phase in asymmetrical 1,3,4-oxadiazole bent-core liquid crystals possessing lateral methoxy group. Liq Cryst. 2017;44:1739–1750.
  • Saha SK, Mohiuddin G, Paul MK, et al. Polar switching and cybotactic nematic ordering in 1,3,4-thiadiazole-based short-core hockey stick-shaped fluorescent liquid crystals. ACS Omega. 2019;4:7711–7722.
  • Panarin YP, Sreenilayam SP, Vij JK, et al. Formation and development of nanometer-sized cybotactic clusters in bent-core nematic liquid crystalline compounds. Beilstein J Nanotechnol. 2018;9:1288–1296.
  • Patranabish S, Mohiuddin G, Begum N, et al. Cybotactic nematic phase of achiral unsymmetrical bent-core liquid crystals-Quelling of polar ordering and the influence of terminal substituent moiety. J Mol Liq. 2018;257:144–154.
  • Alaasar M, Prehm M, May K, et al. 4-cyanoresorcinol-based bent-core mesogens with azobenzene wings: emergence of sterically stabilized polar order in liquid crystalline phases. Adv Funct Mater. 2014;24:1703–1717.
  • Alaasar M, Prehm M, Nagaraj M, et al. A liquid crystalline phase with uniform tilt, local polar order and capability of symmetry breaking. Adv Mater. 2013;25:2186–2191.
  • Kurachkina M, Nádasi H, Alaasar M, et al. Photomanipulation of the mechanical properties in a liquid crystal with azo-containing bent-core mesogens. ChemPhotoChem. 2020;4:5288–5295.
  • Meyer RB. Structural problems in liquid crystal physics. les houches summer school in theoretical physics, 1973. In: Balian R, Weil G, editors. Molecular fluids. New York): Gordon and Breach; 1976. p. 273–373.
  • Memmer R. Liquid crystal phases of achiral banana-shaped molecules: a computer simulation study. Liq Cryst. 2002;29:483–496.
  • Panov VP, Vij JK, Mehl GH. Twist-bend nematic phase in cyanobiphenyls and difluoroterphenyls bimesogens. Liq Cryst. 2017;44:147–159.
  • Paterson DA, Crawford CA, Pociecha D, et al. The role of a terminal chain in promoting the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4′-yl)-6-(4-alkyloxyanilinebenzylidene-4′-oxy)hexanes. Liq Cryst. 2018;45:2341–2351.
  • Arakawa Y, Komatsu K, Shibaa T, et al. Methylene- and thioether-linked cyanobiphenyl-based liquid crystal dimers CBnSCB exhibiting room temperature twist-bend nematic phases and glasses. Mater Adv. 2021;2:1760–1773.
  • Arakawa Y, Komatsu K, Ishida Y, et al. Thioether-linked azobenzene-based liquid crystal dimers exhibiting the twist-bend nematic phase over a wide temperature range. Liq Cryst. 2021;48:641–652.
  • Arakawa Y, Ishida Y, Tsuji H. Ether- and thioether-linked naphthalene-based liquid-crystal dimers: influence of chalcogen linkage and mesogenic-arm symmetry on the incidence and stability of the twist-bend nematic phase. Chem Eur J. 2020;26:3767–3775.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Commun. 2018;91:228.
  • Arakawa Y, Tsuji H. Selenium-linked liquid crystal dimers for twist-bend nematogens. J Mol Liq. 2019;289:111097.
  • Knežević A, Sapunar M, Buljan A. Fine-tuning the effect of π-π interactions on the stability of the NTB phase. Soft Matter. 2018;14:8466–8474.
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist–bend nematic-nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dimer. J Am Chem Soc. 2016;138:5283–5289.
  • Mandle RJ, Davis EJ, Lobato SA, et al. Synthesis and characterisation of an unsymmetrical, ether-linked, fluorinated bimesogen exhibiting a new polymorphism containing the NTB or ‘twist-bend’ phase. Phys Chem Chem Phys. 2014;16:6907–6915.
  • Mandle RJ, Goodby JW. Dependence of mesomorphic behaviour of methylene-linked dimers and the stability of the NTB/NX phase upon choice of mesogenic units and terminal chain length. Chem Eur J. 2016;22:9366–9374.
  • Wang Y, Singh G, Kooijman DMA, et al. Room temperature heliconical twist-bend nematic liquid crystal. CrystEngComm. 2015;17:2778–2782.
  • Schröder MW, Diele S, Pelzl G, et al. Different nematic phases and a switchable SmCP phase formed by homologues of a new class of asymmetric bent-core mesogens. J Mater Chem. 2003;13:1877–1882.
  • Chen D, Nakata M, Shao R, et al. Twist-Bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys Rev E. 2014;89:022506.
  • Sreenilayam SP, Panov VP, Vij JK, et al. The NTB phase in an achiral asymmetrical bentcore liquid crystal terminated with symmetric alkyl chains. Liq Cryst. 2016;44:244–253.
  • Merkel K, Kocot A, Vij JK, et al. Distortions in structures of the twist bend nematic phase of a bent-core liquid crystal by the electric field. Phys Rev E. 2018;98:022704.
  • Wang Y, Z-g Z, Bisoyi HK, et al. Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase. Mater Horiz. 2016;3:442.
  • Varshini GV, Rao DSS, Hiremath US, et al. Dielectric and viscoelastic investigations in a binary system of soft- and rigid-bent mesogens exhibiting the twist-bend nematic phase. J Mol Liq. 2021;323:114987.
  • Sekine T, Niori T, Watanabe J, et al. Spontaneous helix formation in smectic liquid crystals comprising achiral molecules. J Mater Chem. 1997;8:1307–1309.
  • Saha SK, Deb J, Sarkar U, et al. Hockey-stick-shaped mesogens based on 1,3,4-thiadiazole: synthesis, mesomorphism, photophysical and DFT studies. Liq Cryst. 2017;44:2203–2221.
  • Jain V, Mohiuddin G, Pal SK. Design, synthesis and application of 2-chloro-3-nitrobenzoic acid based three-ring bent-core molecules with a terminal halogen moiety. J Mol Struct. 2020;1202:127383.
  • Paul MK, Kalita G, Bhattacharya B, et al. Influence of polar substituent on central bending unit of bent core mesogens: synthesis, photophysical, mesomorphism and DFT studies. J Mol Struct. 2016;1119:177–187.
  • Alaasar M, Prehm M, Tamba M-G, et al. Development of polar order in the liquid crystal phases of a 4-cyanoresorcinol-based bent-core mesogen with fluorinated azobenzene wings. ChemPhysChem. 2016;17:278–287.
  • Sebastián N, Belau S, Eremin A, et al. Emergence of polar order and tilt in terephthalate based bent-core liquid crystals. PhysChemChemPhys. 2017;19:5895.
  • Sreenilayam SP, Panarin YP, Vij JK. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect. Nature Commun. 2016;7:11369.
  • Panarin YP, Sreenilayam SP, Vij JK, et al. A fast linear electro-optical effect in a non-chiral bent-core liquid crystal. J Mater Chem C. 2017;5:12585–12590.
  • Sreenilayam SP, Panarin YP, Vij JK, et al. Development of ferroelectricity in the smectic phases of 4-cyanoresorcinol derived achiral bent-core liquid crystals with long terminal alkyl chains. Phys Rev Mater. 2017;1:035604.
  • Green AAS, Tuchband MR, Shao R, et al. Chiral incommensurate helical phase in a smectic of achiral bent-core mesogens. Phys Rev Lett. 2019;122:107801.
  • Poppe M, Alaasar M, Lehmann A, et al. Controlling the formation of heliconical smectic phases by molecular design of achiral bent-core molecules. J Mater Chem C. 2020;8:3316–3336.
  • Lehmann A, Alaasar M, Poppe M, et al. Stereochemical rules govern the soft self-assembly of achiral compounds: understanding the heliconical liquid-crystalline phases of bent-core mesogens. Chem Eur J. 2020;26:4714–4733.
  • Malkar D, Monika M, Prasad V, et al. Pseudopolar smectic-C phases of azo-substituted achiral bent-core hockey-stick-shaped molecules. Phys Rev E. 2020;101:012701.
  • Trišović N, Matović L, Katona TT, et al. Mesomorphism of novel stilbene-based bent-core liquid crystals. Liq Cryst. 2021;48:1054–1064.
  • Skopalová H, Kozmík V, Šmahel M, et al. Mesomorphic properties of non-symmetric bent-core liquid crystals with a lateral substituent in the apex position. Liq Cryst. 2021;48:1010–1024.
  • Nakamura K, Sugiura S, Araoka F, et al. Conformation-changeable π‑electronic systems with metastable bent-core conformations and liquid-crystalline-state electric-field- responsive properties. Org Lett. 2021;23:305–310.
  • Choudhary K, Gupta RK, Pratibha R, et al. Alignment of liquid crystals using Langmuir-Blodgett films of unsymmetrical bent-core liquid crystals. Liq Cryst. 2019;46:1494–1504.
  • Murthy HNS, Sadashiva BK. A polar biaxial smectic A phase in new unsymmetrical compounds composed of bent-core molecules. Liq Cryst. 2004;31:567–578.
  • Zhang D, Liu Y, Gao H, et al. Self-assembly of bistriazole BDT based bolaamphiphiles into SmA phase and helical organogels. J Mol Liq. 2021;325:114521.
  • Ocak H, Eran BB, Prehm M, et al. Effects of chain branching and chirality on liquid crystalline phases of bent-core molecules: blue phases, de Vries transitions and switching of diastereomeric states. Soft Matter. 2011;7:8266–8280.
  • Ocak H, Poppe M, Bilgin-Eran B, et al. Effects of molecular chirality on self-assembly and switching in liquid crystals at the cross-over between rod-like and bent shapes. Soft Matter. 2016;12:7405–7422.
  • Punjani V, Mohiuddin G, Kaur S, et al. Observation of polar order and thermochromic behaviour in a chiral bent-core system exhibiting exotic mesophases due to superstructural frustration. Chem Commun. 2018;54:3452–3455.
  • Punjani V, Mohiuddin G, Kaur S, et al. Chiral bent-shaped molecules exhibiting unusually wide range of blue liquid-crystalline phases and multistimuli-responsive behavior. Chem Euro J. 2020;26:5859–5871.
  • Ocak H, Canli NY, Eran BB. Synthesis, mesomorphic and dielectric properties of new bent-core liquid crystal with a terminal lactate group. J Mol Struct. 2021;1223:128975.
  • Truong LT, Larsen A, Holme B, et al. Dispersibility of silane-functionalized alumina nanoparticles in syndiotactic polypropylene. Surf Interface Anal. 2010;42:1046–1049.
  • Karabuğa H, Mert HH, Karanlık G, et al. Synthesis and characterization of bent-core liquid crystal/modified γ-Al2O3 nanocomposites. ChemistrySelect. 2019;4:8983–8988.
  • Joshi T, Prakash J, Kumar A, et al. Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal. J Phys D: Appl Phys. 2011;44:315404–315411.
  • Vistak M, Sushynskyi O, Mykytyuk Z, et al. Sensing of carbon monoxide with porous Al2O3 intercalated with Fe3O4 nanoparticles-doped liquid crystal. Sens Actuators A. 2015;235:165–170.
  • Özkonstanyan A, Mert HH, Mert MS, et al. Synthesis and characterization of new bent-core liquid crystal with a ferroelectric-like switching/modified magnetite nanocomposite. J Mol Struct. 2020;1222,:128851.
  • Asiya SI, Pal K, El-Sayyad GS, et al. Reliable optoelectronic switchable device implementation by CdS nanowires conjugated bent-core liquid crystal matrix. Org Electron. 2020;82:105592.
  • Renn SR, Lubensky TC. Abrikosov dislocation lattice in a model of the cholesteric-to-smectic-A transition. Phys Rev A. 1988;38:2132–2147.
  • Renn SR. Multicritical behavior of Abrikosov vortex lattices near the cholesteric-smectic-A-smectic-C* point. Phys Rev Lett. 1992;45:953–973.
  • Goodby JW, Waugh MA, Stein SM, et al. Characterization of a new helical smectic liquid crystal. Nature. 1989;337:449–452.
  • Ismaïli M, Bougrioua F, Isaert N, et al. Dielectric properties of twist grain boundary phases: influence of the floating and the distance between grain boundaries. Phys Rev E. 2001;65:011701.
  • Dodge MR, Vij JK, Cowling SJ, et al. Dielectric spectroscopy of the twist grain boundary phase and smectic‐like behaviour in the Isotropic Phase. Liq Cryst. 2005;32:1045–1051.
  • Dierking I, Gieselmann F, Zugenmaier P. TGBA* state in a homologous series of diarylethane α-chloroester ferroelectric liquid crystals. Liq Cryst. 1994;17:17–22.
  • Ocak H, Bilgin-Eran B, Güzeller D, et al. Twist grain boundary (TGB) states of chiral liquid crystalline bent-core mesogens. Chem Commun. 2015;51:7512–7515.
  • Unpublished results.
  • Chakraborty S, Das MK, Bubnov A, et al. Induced frustrated twist grain boundary liquid crystalline phases in binary mixtures of achiral hockey stick-shaped and chiral rod-like materials. J Mater Chem C. 2019;7:10530–10543.
  • Nagaraj M. Dark conglomerate phases of bent-core liquid crystals. Liq Cryst. 2016;43:2244–2253.
  • Alaasar M, Prehm M, Tschierske C. Mirror symmetry breaking in fluorinated bent-core mesogens. RSC Adv. 2016;6:82890–82899.
  • Alaasar M, Prehm M, Brautzsch M, et al. Dark conglomerate phases of azobenzene derived bent-core mesogens-relationships between the molecular structure and mirror symmetry breaking in soft matter. Soft Matter. 2014;10:7285–7296.
  • Alaasar M, Prehm M, Tschierske C. Influence of halogen substituent on the mesomorphic properties of five-ring banana-shaped molecules with azobenzene wings. Liq Cryst. 2013;40:656–668.
  • Kohout M, Alaasar M, Poryvaia A, et al. Photosensitive bent-core liquid crystals based on methyl substituted 3-hydroxybenzoic acid. RSC Adv. 2017;7:35805–35813.
  • Canli NY, Ocak H, Yildiz A, et al. The temperature effect on dielectric parameters of bent-core liquid crystal (DHB). J Mol Liq. 2017;238:370–378.
  • Hegde RS, Kumar J, Prasad V. Achiral bent-core salicylaldimine compounds exhibiting dark conglomerate and B2 mesophases: effect of linkage groups and lateral substituents. Liq Cryst. 2019;46:1091–1107.
  • Bazavan O, Saha SK, Paul MK, et al. Chiral domain formation and spontaneous de-racemization in the dark conglomerate phase of a bent-core liquid crystal. J Mol Liq. 2020;315:113706.
  • Hough LE, Jung HT, Krüerke D, et al. Helical nanofilament phases. Science. 2009;325:456–460.
  • Tsai E, Richardson JM, Korblova E, et al. A Modulated Helical Nanofilament Phase. Angew Chem. 2013;125:5362–5365.
  • Li L, Salamonczyk M, Jákli A, et al. A dual modulated homochiral helical nanofilament phase with local columnar ordering formed by bent core liquid crystals: effects of molecular chirality. Small. 2016;12:3944–3955.
  • Li L, Salamończyk M, Shadpour S, et al. An unusual type of polymorphism in a liquid crystal. Nat Commun. 2018;9:1–8.
  • Shadpour S, Nemati A, Boyd NJ, et al. Heliconical-layered nanocylinders (HLNCs) – hierarchical self-assembly in a unique B4 phase liquid crystal morphology. Mater Horiz. 2019;6:959–968.
  • Shadpour S, Nemati A, Salamończyk M, et al. Missing link between helical nano- and microfilaments in b4 phase bent-core liquid crystals, and deciphering which chiral center controls the filament handedness. Small. 2020;16:1905591.
  • Liu J, Shadpour S, Prévôt ME, et al. Molecular conformation of bent-core molecules affected by chiral side chains dictates polymorphism and chirality in organic nano- and microfilaments. ACS Nano. 2021;15:7249–7270.
  • Liu J, Shadpour S, Nemati A, et al. Binary mixtures of bent-core molecules forming distinct types of B4 phase nano- and microfilament morphologies. Liq Cryst. 2021;48:1129–1139.
  • Shadpour S, Nemati A, Liu J, et al. Directing the handedness of helical nanofilaments confined in nanochannels using axially chiral binaphthyl dopants. ACS Appl Mater Interfaces. 2020;12:13456–13463.
  • Gude V, Rout D, Panigrahi MK, et al. Origin of green photoluminescence in four-ring bent-core molecules with ESIPT, selective sensing of zinc ions by turn-on emission and their liquid crystal properties. Photochem Photobiol Sci. 2018;17:1386.
  • Gude V, Karmakar M, Dey A, et al. Is the origin of green fluorescence in unsymmetrical four-ring bent-core liquid crystals single or double proton transfer? Phys Chem Chem Phys. 2020;22:4731–4740.
  • Mohiuddin G, Ghosh S, Begum N, et al. Amide linkage in novel three-ring bent-core molecular assemblies: polar mesophases and importance of H-bonding. Liq Cryst. 2018;45:1549–1566.
  • Hegde RS, Sunil BN, Hegde G, et al. Influence of alkyl and alkoxy groups on photoresponsive behaviour of bent-core azo mesogens: synthesis, mesomorphic and photoswitching properties. J Mol Liq. 2020;309:113091.
  • Coelho RL, Westphal E, Mezalira DZ, et al. Polycatenar liquid crystals based on bent-shaped chalcone and cyanopyridine molecules. Liq Cryst. 2017;44:405–416.
  • Shi Y, Sun Z, Chen R, et al. Effect of conformational chirality on optical activity observed in a smectic of achiral, bent-core molecules. J Phys Chem B. 2017;121:6944–6950.
  • Ocak H, Özerol EA, Çelikel FÇ, et al. The synthesis, mesomorphic and dielectric investigation of new unsymmetrical bent‑core mesogens derived from 3‑hydroxybenzoic acid. Chem Pap. 2020;74:3899–3911.
  • Canlı NY, Ocak H, Kara H, et al. Synthesis, characterization and investigation of mesomorphic and dielectric properties of novel biphenyl-based bent-core liquid crystals. J Mater Sci: Mater Electron. 2021;32:24560–24574.
  • Coles HJ, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436:997–1000.
  • Yoshizawa A, Sato M, Rokunohe J. A blue phase observed for a novel chiral compound possessing molecular biaxiality. J Mater Chem. 2005;15:3285–3290.
  • Yoshizawa A. Material design for blue phase liquid crystals and their electro-optical effects. RSC Adv. 2013;3:25475–25497.
  • Dierking I, Blenkhorn W, Credland E, et al. Stabilising liquid crystalline blue phases. Soft Matter. 2012;8:4355–4362.
  • Rahman MDA, Said SM, Balamurugan S. Blue phase liquid crystal: strategies for phase stabilization and device development. Sci Technol Adv Mater. 2015;16:033501.
  • Yang J, Zhao W, He W, et al. Liquid crystalline blue phase materials with three-dimensional nanostructures. J Mater Chem C. 2019;7:13352–13366.
  • Hur S-T, Gim M-J, Yoo H-J, et al. Investigation for correlation between elastic constant and thermal stability of liquid crystalline blue phase I. Soft Matter. 2011;7:8800–8803.
  • Alexander GP, Yeomans JM. Stabilizing the blue phases. Phys Rev E Stat Nonlinear Soft Matter Phys. 2006;74:061706.
  • Zheng Z, Shen D, Huang P, et al. Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules. New J Phys. 2010;12:113018.
  • Zheng Z, Shen D, Huang P, et al. The liquid crystal blue phase induced by bent-shaped molecules with different terminal chain lengths. New J Phys. 2011;13:063037.
  • Yelamaggad CV, Shashikala IS, Liao G, et al. Blue phase, smectic fluids, and unprecedented sequences in liquid crystal dimers. Chem Mater. 2006;18:6100–6102.
  • Chiang I-H, Long C-J, Lin H-C, et al. Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores. ACS Appl Mater Interfaces 2014;6(1):228–235. DOI:https://doi.org/10.1021/am403976a.
  • Le KV, Hafuri M, Ocak H, et al. Unusual electro-optic kerr response in a self-stabilized amorphous blue phase with nanoscale smectic clusters. ChemPhysChem. 2016;17:1425–1429.
  • Unpublished results.
  • Nakata M, Takanishi Y, Watanabe J, et al. Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules. Phy Rev E. 2003;68:041710.
  • Wang H, Zheng Z, Shen D. Blue phase liquid crystals induced by bent-shaped molecules based on 1,3,4-oxadiazole derivatives. Liq Cryst. 2012;39:99–113.
  • Lee M, Hur S-T, Higuchi H, et al. Liquid crystalline blue phase I observed for a bent-core molecule and its electro-optical performance. J Mater Chem. 2010;20:5813–5816.
  • Taushanoff S, Le KV, Williams J, et al. Stable amorphous blue phase of bent-core nematic liquid crystals doped with a chiral material. J Mater Chem. 2010;20:5893–5898.
  • Zhang W, He W, Di C, et al. Effects of thiophene-based mesogen terminated with branched alkoxy group on the temperature range and electro-optical performances of liquid crystalline blue phases. Liq Cryst. 2016;43:524–534.
  • Khan RK, Turlapati S, Rao NVS, et al. Novel achiral four-ring bent-shaped nematic liquid crystals with trifluoromethyl and methyl substituents in the central molecular core: an unusually large Kerr constant in blue phase III of nematic-chiral dopant mixture. J Mater Chem C. 2017;5:6729–6737.
  • Wang M, Hu W, Wang L, et al. Reversible light-directed self-organized 3D liquid crystalline photonic nanostructures doped with azobenzene-functionalized bent-shaped molecules. J Mater Chem C. 2018;6:7740–7744.
  • Yu Y-B, He W-L, Jiang Z-M, et al. The effects of azo-oxadiazole-based bent-shaped molecules on the temperature range and the light-responsive performance of blue phase liquid crystal. Liq Cryst. 2019;46:1024–1034.
  • Han -C-C, Chou Y-C, Chen S-Y, et al. Hydrogen-bonded bent-core blue phase liquid crystal complexes containing various molar ratios of proton acceptors and donors. RSC Adv. 2016;6:32319–32327.
  • Liu H, Shen D, Wang X, et al. Wide blue phase range induced by bent-shaped molecules with acrylate end groups. Opt Mater Express. 2016;6:436–443.
  • Keith C, Lehmann A, Baumeister U, et al. Nematic phases of bent-core mesogens. Soft Matter. 2010;6:1704–1721.
  • Yang W-Q, Cai G-Q, Liu Z, et al. Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material. J Mater Chem C. 2017;5:690–696.
  • Jo S-Y, Jeon S-W, Kim B-C, et al. Polymer stabilization of liquid-crystal blue phase ii toward photonic crystals. ACS Appl Mater Interfaces. 2017;9:8941–8947.
  • Nagaraja P, Ramarao P. Clusters of B7 fibers reveal origin of blue phase stability in a binary mixture of chiral rod-like and achiral bent-core molecules. Langmuir. 2019;35:11200–11209.
  • Saha SK, Bhattacharya B, Sarkar U, et al. Unsymmetrical achiral four ring hockey stick shaped mesogens based on 1,3,4-oxadiazole: photophysical, mesogenic and DFT studies. J Mol Liq. 2017;241:881–896.
  • Saha SK, Paul MK. Mesomorphic and photophysical behaviour of 1,3,4-oxadiazole based hockey stick reactive mesogens. Liq Cryst. 2019;46:386–396.
  • Upadhyaya K, Ghosh S, Khan RK. Development of nematic and orthogonal smectic phases in short-core fluorinated hockey-stick shaped liquid crystal compounds. J Mol Liq. 2020;298:111989.
  • Kaur S, Punjani V, Mohiuddin G, et al. Orthogonal smectic and nematic ordering in three-ring polar bent-core molecules with anti-parallel arrangement. New J Chem. 2017;41:5403–5411.
  • Kaur S, Mohiuddin G, Satapathy P, et al. Influence of terminal halogen moieties on the phase structure of short-core achiral hockey-stick-shaped mesogens: design, synthesis and structure-property relationship. Mol Syst Des Eng. 2018;3:839–852.
  • Oakberg TC. Measurements of waveplate retardation using a photoelastic modulator. Proc SPIE. 1997;19:3121.
  • Sathyanarayana P, Mathews M, Li Q, et al. Splay bend elasticity of a bent-core nematic liquid crystal. Phys Rev E 2010;81:010702. R. DOI:https://doi.org/10.1103/PhysRevE.81.010702
  • Dhara S, Madhusudana NV. Enhancement of the orientational order parameter of nematic liquid crystals in thin cells. Eur Phys J E. 2001;13:401.
  • Dhara S, Madhusudana NV. Influence of director fluctuations on the electric-field phase diagrams of nematic liquid crystals. Europhys Lett. 2004;67:411.
  • Sathyanarayana P, Varia MC, Prajapati AK, et al. Splay-bend elasticity of a nematic liquid crystal with T-shaped molecules. Phys Rev E. 2010;81:010702(R).
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics. J Chem Phys. 1941;9:341.
  • Kundu B, Pratibha R, Madhusudana NV. Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rod-like and bent-core molecules. Phys Rev Lett. 2007;99:247802.
  • Morris SW, Palffy P, Balzarini DA. Measurements of the bend and splay elastic constants of octyl-cyanobiphenyl. Mol Cryst Liq Cryst. 1986;139:263.
  • Lubensky TC. The nematic to smectic-A transition: a theoretical overview. J de Chim Phys. 1983;80:31. P G de Gennes. Some Remarks on the Polymorphism of Smectics. Mol Cryst Liq Cryst. 1973;21:49. DOI:https://doi.org/10.1051/jcp/1983800031.
  • Kaur S, Mohiuddin G, Punjani V, et al. Structural organization and molecular self-assembly of a new class of polar and non-polar four-ring based bent-core molecules. J Mol Liq. 2019;295:111687.
  • Paladugu S, Kaur S, Mohiuddin G, et al. Microrheology to probe smectic clusters in bent-core nematic liquid crystals. Soft Matter. 2020;16:7556.
  • Khan RK, Turlapati S, Begum N, et al. Impact of terminal polar substitution on elastic, electro-optic and dielectric properties of four-ring bent-core nematic liquid crystals. RSC Adv. 2018;8:11509–11516.
  • Kumar J, Prasad V. Ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound. J Phys Chem B. 2018;122:2998–3007.
  • Begum N, Kaur S, Mohiuddin G, et al. Structural understanding, photoswitchability, and supergelation of a new class of four ring-based bent-shaped liquid crystal. J Phys Chem B. 2019;123:4443–4451.
  • Šmahel M, Poryvai A, Xiang Y, et al. Photosensitive bent-core nematic liquid crystals with various linking units in the side arms: structure-properties relationships. J Mol Liq. 2020;306:112743.
  • Kaur S, Begum N, Mohiuddin G, et al. Photo-responsive behavior of azobenzene based polar hockey-stick-shaped liquid crystals. ChemPhysChem. 2021;22:1361–1370.
  • Jain V, Kaur S, Mohiuddin G, et al. Design, synthesis and characterization of achiral unsymmetrical four-ring based hockey-stick shaped liquid crystals: structure-property relationship. Liq Cryst. 2022;49:162-171.
  • Chakraborty S, Das MK, Keith C, et al. Study of ferro- and anti-ferroelectric polar order in mesophases exhibited by bent-core mesogens. Mater Adv. 2020;1:3545–3555.
  • Bisoyi HK, Singh G, Fisch MR, et al. Chiral and orientationally ordered fluid mesophases formed by oxadiazole bisaniline based achiral bent mesogens. Liq Cryst. 2019;46:1373–1382.
  • Srinivasa HT, Prutha N, Pratibha R. Nematic and switchable intercalated phases in polymerizable bent-core monomers with naphthalene moiety in the side arms of thearomatic core. J Mol Struct. 2020;119:126971.
  • Girotto E, Behramand B, Bechtold IH, et al. Thiophene-based bent-shaped luminescent liquid crystals: synthesis and characterisation. Liq Cryst. 2017;44:1231–1239.
  • Bajzíková K, Veselý J, Kozmík V, et al. Diphenylthiophenes as central part for the design of bent-core liquid crystalline compounds. J Mol Liq. 2018;267:496–503.
  • Matraszek J, Grześkiewicz K, Górecka E, et al. Fluorescent bent-core mesogens with thiophene-based central unit. Liq Cryst. 2020;47:1803–1810.
  • Gowda A, Jacob L, Joy N, et al. Thermal and nonlinear optical studies of newly synthesized EDOT based bent-core and hockey-stick like liquid crystals. New J Chem. 2018;42:2047–2057.
  • Gowda A, Kumar S. Ethylenedioxythiophene as a novel central unit for bent-core liquid crystals. Liq Cryst. 2016;43:1721–1731.
  • Gowda A, Roy A, Kumar S. Synthesis and mesomorphic properties of novel Schiff base liquid crystalline EDOT derivatives. J Mol Liq. 2017;225:840–847.
  • Kozmíka V, Rodinová E, Prausová T, et al. Mesogens with central naphthalene core substituted at various positions. Liq Cryst. 2018;45:746–756.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.