596
Views
5
CrossRef citations to date
0
Altmetric
Articles

Electrically controllable reflection bandwidth polymer-stabilized cholesteric liquid crystals with low operating voltage

, , , , ORCID Icon, & show all
Pages 1314-1321 | Received 08 Dec 2021, Accepted 11 Jan 2022, Published online: 28 Jan 2022

References

  • Kitzerow HS, Kitzerow HS. Physik HJJoMC. Chirality in liquid crystals. J Mater Chem. 2001;1(3):307–318.
  • Blinov LM. Structure and properties of liquid crystals. Dordrecht (The Netherlands): Springer; 2011.
  • Hu W, Zhao H, Song L, et al. Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites. Adv Mater. 2010 26;22(4):468–472.
  • Tamaoki N. Cholesteric liquid crystals for color information technology. Adv Mater. 2010;13(15):1135–1147.
  • Coates D. Development and applications of cholesteric liquid crystals. Liq Cryst. 2015 3;42(5–6):653–665.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012 11;24(47):6260–6276.
  • St John WD, Fritz WJ, Lu ZJ, et al. Bragg reflection from cholesteric liquid crystals. Phys Rev E. 1995;51(2):1191–1198.
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467–469.
  • De Filpo G, Nicoletta FP, Chidichimo G. Cholesteric emulsions for colored displays. Adv Mater. 2005;17(9):1150–1152.
  • Van de Witte P, Brehmer M, Lub J. LCD components obtained by patterning of chiral nematic polymer layers. J Mater Chem. 1999;9(9):2087–2094.
  • Yang H, Mishima K, Matsuyama K, et al. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites. Appl Phys Lett. 2003 14;82(15):2407–2409.
  • Chen SH, Mastrangelo JC, Jin RJ. Glassy liquid crystal films as broadband polarizers and reflectors via spatially modulated photoracemization. Adv Mater. 1999;11(14):1183–1186.
  • Bian Z, Li K, Wei H, et al. Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution. Appl Phys Lett. 2007;91(20):215–237.
  • Mrukiewicz M, Iadlovska OS, Babakhanova G, et al. Wide temperature range of an electrically tunable selective reflection of light by oblique helicoidal cholesteric. Liq Cryst. 2019;46(10):1544–1550.
  • Liu Y, Wang D, Gao H, et al. TiO2 nanorod arrays induced broad-band reflection in chiral nematic liquid crystals with photo-polymerization network. Liq Cryst. 2019;46(2):210–218.
  • Zhao LM, Shi WT, Gan P, et al. Broadband reflection cholesteric liquid crystal film fabricated by near-infrared photothermal response technology. Liq Cryst. 2021;19(5):1–11.
  • Li E, Zhang D, Cao H, et al. Preparation of liquid crystal film capable of shielding visible light band by two‐phase coexistence. J Polym Sci. 2020;58(4):599–606.
  • Zhao Y, He Z, Zhang H, et al. Preparation and properties of ZnO nanorod array/liquid crystal composite system. Liq Cryst. 2019;47(6):810–818.
  • Broer DJ, Mol GN, Haaren JAMM, et al. Photo-induced diffusion in polymerizing chiral-nematic media. Adv Mater. 1999;11(7):573–578.
  • Lub J, Broer DJ, Wegh RT, et al. Formation of optical films by photo-polymerisation of liquid crystalline acrylates and application of these films in liquid crystal display technology. Mol Cryst Liq Cryst. 2005;429(1):77–99.
  • Hu W, Chen M, Wang Q, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol-acrylate chemistry. Angew Chem Int Ed. 2019 13; 58(20): 6698–6702.
  • Hrozhyk UA, Serak SV, Tabiryan NV, et al. Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials. Adv Mater. 2007;19(20):3244–3247.
  • White TJ, Freer AS, Tabiryan NV, et al. Photoinduced broadening of cholesteric liquid crystal reflectors. J Appl Phys. 2010 1; 107(7): 073110.1–073110.6.
  • Ge J, Yin Y. Responsive photonic crystals. Angew Chem Int Ed. 2011 11;50(7):1492–1522.
  • Nucara L, Greco F, Mattoli V. Electrically responsive photonic crystals: a review. J Mater Chem C. 2015;3(33):8449–8467.
  • White TJ, McConney ME, Bunning TJ. Dynamic color in stimuli-responsive cholesteric liquid crystals. J Mater Chem. 2010;20(44):9832–9847.
  • Lee KM, Tondiglia VP, McConney ME, et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics. 2014;1(10):1033–1041.
  • Lee KM, Tondiglia VP, Lee T, et al. Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals. J Mater Chem C. 2015;3(34):8788–8793.
  • Khandelwal H, Timmermans GH, Debije MG, et al. Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density. Chem Commun. 2016 9; 52(66): 10109–10112.
  • Min Lee K, Tondiglia VP, Godman NP, et al. Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals. Soft Matter. 2017;13(35):5842–5848.
  • Hu X, Zeng W, Yang W, et al. Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals. Liq Cryst. 2018;46(2):185–192.
  • Lu HB, Wei C, Zhang Q, et al. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal. Photonics Res. 2019 1; 7(2): 137–143.
  • Zhang Q, Zhang X, Yang L, et al. Polymer-stabilised cholesteric liquid-crystals as tunable light-reflector with low operating-voltage and energy consumption. Liq Cryst. 2020;47(11):1655–1662.
  • Nemati H, Liu S, Zola RS, et al. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter. 2015 14; 11(6): 1208–1213.
  • Lin TH, Jau HC, Chen CH, et al. Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy. Appl Phys Lett. 2006 6;88(6):1896.
  • Lee KM, Tondiglia VP, White TJ. Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals. Soft Matter. 2015;12(4):1256–1261.
  • Khandelwal H, Debije MG, White TJ, et al. Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. J Mater Chem A. 2016;4(16):6064–6069.
  • Lu H, Hu J, Chu Y, et al. Cholesteric liquid crystals with an electrically controllable reflection bandwidth based on ionic polymer networks and chiral ions. J Mater Chem C. 2015;3(21):5406–5411.
  • Tondiglia VP, Natarajan LV, Bailey CA, et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt Mater Express. 2014;1;4(7):1465–1472.
  • Heeswijk EPA, Yang L, Grossiord N, et al. Tunable photonic materials via monitoring step‐growth polymerization kinetics by structural colors. Adv Funct Mater. 2019;30(7):1906833.1–1906833.7.
  • Kizhakidathazhath R, Geng Y, Jampani VSR, et al. Facile anisotropic deswelling method for realizing large‐area cholesteric liquid crystal elastomers with uniform structural color and broad‐range mechanochromic response. Adv Funct Mater. 2019;30(7):1909537.1–1909537.8.
  • Brannum MT, Steele AM, Venetos MC, et al. Light control with liquid crystalline elastomers. Adv Opt Mater. 2019 19; 7(6): 1801683.1–1801683.7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.