279
Views
1
CrossRef citations to date
0
Altmetric
Articles

Light-controllable chiral dopant based on azo-fragment: synthesis and characterisation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1322-1337 | Received 07 Oct 2021, Accepted 16 Jan 2022, Published online: 24 Feb 2022

References

  • Planer J. Notiz über das cholestearin [note about the cholesterol]. Annal Chem Pharm.1861;118:25–27. German.
  • Shenderovskyi VA, Trokhymchuk AD, and Lisetski LN, et al. Julius Planer. A pioneer in the study of liquid crystals. J Mol Liq. 2018;267:560–563.
  • Reinitzer F. Beiträge zur kenrniss des cholesterins [contributions to the knowledge of cholesterol]. Monatsh Chem. 1888;9:421–441. German.
  • Lehman O. Über fliessende kristalle [about flowing crystals]. Z Phys Chem. 1889;4:462–472. German.
  • de Gennes PG, and Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Chilaya G. Induction of chirality in nematic phases. Rev Phys Appl. 1981;16:193–208.
  • Chilaya GS, Lisetski LN. Cholesteric liquid crystals: physical properties and molecular-statistical theories. Mol Cryst Liq Cryst. 1986;140:243–286.
  • Yarmolenko SN, Kutulya LA, Vashchenko VV, et al. Photosensitive chiral dopants with high twisting power. Liq Cryst. 1994;16:877–882.
  • Yamaguchi T, Inagawa T, Nakazumi H, et al. Photoswitching of helical twisting power of a chiral diarylethene dopant: pitch change in a chiral nematic liquid crystal. Chem Mater. 2000;12:869–871.
  • Bobrovsky AYu, Boiko NI, and Shibaev VP. New chiral-photochromic dopant with variable helical twisting power and its use in photosensitive cholesteric materials. Mol cryst liq cryst science and technology. Section A Mol Cryst Liq Cryst. 2001;363:35–50.
  • Li Q, Green L, Venkataraman N, et al. Reversible photoswitchable axially chiral dopants with high helical twisting power. J Am Chem Soc. 2007;129:12908–12909.
  • Goh M, Kyotani M, Akagi K. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field. J Am Chem Soc. 2007;129:8519–8527.
  • Lu J, Gu W, Wei J, et al. Novel planar chiral dopants with high helical twisting power and structure-dependent functions. J Mater Chem C. 2016;4:9576–9580.
  • Eelkema R, Feringa BL. Amplification of chirality in liquid crystals. Org Biomol Chem. 2006;4:3729–3745.
  • Bisoyi HK, Li Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc Chem Res. 2014;47:3184–3196.
  • Mathews M, Zola R, Yang D, et al. Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals. J Mater Chem. 2011;21:2098–2103.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24:6260–6276.
  • Eelkema R. Photo-responsive doped cholesteric liquid crystals. Liq Cryst. 2011;38:1641–1652.
  • Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater. 2012;24:1926–1945.
  • Chanishvili A, Petriashvili G, Ponjavidze N, et al. Reversible LED controlled optical activity of a cholesteric liquid crystal layer. Mol Cryst Liq Cryst. 2019;683:14–19.
  • Il’chishin I, Tikhonov E, Tishchenko V, et al. Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 1978;32:24–27.
  • Ha NY, Ohtsuka Y, Jeong SM, et al. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nat Mater. 2008;7:43–47.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676–685.
  • Ilchishin IP, Lisetski LN, Mykytiuk TV. Reversible phototuning of lasing frequency in dye doped cholesteric liquid crystal and ways to improve it. Opt Mater Express. 2011;1:1484–1493.
  • Mykytiuk TV, Ilchishin IP, Yaroshchuk OV, et al. Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal. Opt Lett. 2014;39:6490–6493.
  • Fuh AYG, Ho SJ, Wu ST, et al. Optical filter with tunable wavelength and bandwidth based on phototunable cholesteric liquid crystals. Appl Opt. 2014;53:1658–1662.
  • Gvozdovskyy I. Electro- and photoswitching of undulation structures in planar cholesteric layers aligned by a polyimide film possessing various values of the anchoring energy. Liq Cryst. 2018;45:536–552.
  • Solladie´ G, Zimmermann RG. Liquid crystals: a tool for studies on chirality. Angew Chem Int Ed Eng. 1984;23:348–362.
  • Kitzerow HS, Bahr C. Chirality in liquid crystals. New York: Springer; 2001.
  • Senyuk B, Smalyukh I, Lavrentovich O. Electrically-controlled two-dimensional gratings based on layers undulations in cholesteric liquid crystals. In: Khoo I-C, editor. Liquid Crystals IX. IR, microwave, and beam steering. Proceedings of SPIE 59360W; 2005 Aug 20; San Diego. California (USA); 2005. Doi: 10.1117/12.615976.
  • Senyuk BI, Smalyukh II, Lavrentovich OD. Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold. Phys Rev E. 2006;74:011712.
  • Gvozdovskyy I. Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field. Liq Cryst. 2014;41:1495–1504.
  • Ennulat RD, Garn LE, White JD. The temperature sensitivity of the selective reflection by cholesteric mesophases and its possible limitations. Mol Cryst Liq Cryst. 1974;26:245–267.
  • Li Y, Liu YJ, Dai HT, et al. Flexible cholesteric films with super-reflectivity and high stability based on a multi-layer helical structure. J Mater Chem C. 2017;5:10828–10833.
  • Zhang W, Froyen AAF, Schenning APHJ, et al. Temperature-responsive photonic devices based on cholesteric liquid crystals. Adv Photonics Res. 2021;2:2100016.
  • Agez G, Relaix S, Mitov M. Cholesteric liquid crystal gels with a graded mechanical stress. Phys Rev E. 2014;89:022513.
  • Fergason JL, Goldberg NN, Nadalin RJ. Cholesteric structure-II chemical significance. Mol Cryst. 1966;1:309–323.
  • Gupta VK, Skaife JJ, Dubrovsky TB, et al. Optical amplification of ligand-receptor binding using liquid crystals. Science. 1998;279:2077–2080.
  • Shah RR, Abbott NL. Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science. 2001;293:1296–1299.
  • Shibaev PV, Chiappetta D, Sanford RL, et al. Color changing cholesteric polymer films sensitive to amino acids. Macromol. 2006;39:3986–3992.
  • Mujahid A, Stathopulos H, Lieberzeit PA, et al. Solvent vapour detection with cholesteric liquid crystals-optical and mass-sensitive evaluation of the sensor mechanism. Sensors. 2010;10:4887–4897.
  • Helfrich W. Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals. J Chem Phys. 1971;55:839–842.
  • Hurault JP. Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields. J Chem Phys. 1973;59:2068–2075.
  • Zeldovich BY, Tabiryan NV. Equilibrium structure of a cholesteric with homeotropic orientation on the walls. Sov Phys JETP. 1982;56:563–566.
  • Niggemann E, Stegemeyer H. Magnetic field-induced instabilities in cholesteric liquid crystals: periodic deformations of the Grandjean texture. Liq Cryst. 1989;5:739–747.
  • Smalyukh II, Senyuk BI, Palffy-Muhoray P, et al. Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys Rev E. 2005;72:061707.
  • Huh JH. Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field. Mol Cryst Liq Cryst. 2007;477:67/[561]-76/[570].
  • Xiang J, Li Y, Li Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27:3014–3018.
  • Rupnik M, Lisjak P, Čopič D, et al. Field-controlled structures in ferromagnetic cholesteric liquid crystals. Sci Adv. 2017;3:e1701336-1-10.
  • Ryabchun A, Bobrovsky A, Stumpe J, et al. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv Opt Mater. 2015;3:1273–1279.
  • Gvozdovsky IA, Terenetskaya IP. Comparative study of the provitamin D photoisomerization kinetics in ethanol and liquid crystal. J Funct Mater. 2000;7:508–512.
  • Serbina MI, Kasian NA, Lisetski LN. Helical twisting in nemato-cholesteric systems based on cholesterol derivatives and photosensitive azoxy compounds. Crystallogr Rep. 2013;58:155–159.
  • Thapa K, Iadlovska OS, and Bisoyi HK, et al. Combined electric and photocontrol of selective light reflection at an oblique helicoidal cholesteric liquid crystal doped with azoxybenzene derivative. Phys Rev E. 2021;104:044702.
  • Denekamp C, and Feringa BL. Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases. Adv Mater. 1998;10:1080–1082.
  • Van Delden RA, van Gelder MB, and Huck NPM, et al. Controlling the color of cholesteric liquid-crystalline films by photoirradiation of a chiroptical molecular switch used as dopant. Adv Func Mater. 2003;13:319–324.
  • Aßhoff SJ, Iamsaard S, Bosco A, et al. Time-programmed helix inversion in phototunable liquid crystals. Chem Commun. 2013;49:4256–4258.
  • Ryabchun A, Lancia F, Chen J, et al. Helix inversion controlled by molecular motors in multistate liquid crystals. Adv Mater. 2020;32:2004420.
  • Li Y, Li Q. Photochemically reversible and thermally stable axially chiral diarylethene switches. Org Lett. 2012;14:4362–4365.
  • Ma J, Li Y, White T, et al. Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning. Chem Commun. 2010;46:3463–3465.
  • Bisoyi HK, Li Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures. Angew Chem Int Ed. 2016;55:2994–3010.
  • Mathews M, Zola RS, Hurley S, et al. Light-driven reversible handedness inversion in self-organized helical superstructures. J Am Chem Soc. 2010;132:18361–18366.
  • Bobrovsky AY, Boiko NI, Shibaev VP. New chiral photochromic menthone-containing homopolymers and copolymers - synthesis, phase behaviour and photo-optical properties. Liq Cryst. 1999;26:1749–1765.
  • Bobrovsky AYu, Boiko NI, and Shibaev VP, et al. Cholesteric mixture containing a chiral azobenzene-based dopant:materials with with reversible photo switching of the pitch of the helix. Liq Cryst. 2000;27:1381–1387.
  • Bobrovsky AYu, Boiko NI, and Shibaev VP, et al. New chiral nematic materials with photovariable helical supramolecular structure for reversible optical data recording. Adv Mater. 2000;12:1180–1183.
  • Bobrovsky A, Boiko N, Shibaev V. A new type of multifunctional material based on dual photochromism of ternary chiral photochromic liquid crystalline copolymers for optical data recording and storage. J Mater Chem. 2000;10:1075–1081.
  • Bobrovsky A, Shibaev V. Photo-optical behaviour of a photosensitive chiral nematic copolymer and mixtures containing non-chiral photoactive azobenzene groups. Liq Cryst. 2003;30:671–680.
  • Ryabchun A, Sakno O, Stumpe J, et al. Full-polymer cholesteric composites for transmission and reflection holographic gratings. Adv Opt Mater. 2017;5:201700314.
  • Jampani VSR, Škarabot M, Ravnik M, et al. Colloidal entanglement in highly twisted chiral nematic colloids: twisted loops, hopf links, and trefoil knots. Phys Rev E. 2011;84:031703.
  • Gvozdovskyy I, Jampani VSR, Škarabot M, et al. Light-induced rewiring and winding of Saturn ring defects in photosensitive chiral nematic colloids. Eur Phys J E. 2013;36:97–104.
  • Varanytsia A, Chien LC. Photoswitchable and dye-doped bubble domain texture of cholesteric liquid crystals. Opt Lett. 2015;40:4392–4395.
  • Terenetskaya I, Gvozdovsky I. Development of personal UV biodosimeter based on vitamin D photosynthesis. Mol Cryst Liq Cryst. 2001;368:551–558.
  • Hrozhyk UA, Serak SV, Tabiryan, et al. Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals. Adv Fun Mat. 2007;17:1735–1742.
  • Montbach E, Venkataraman N, Doane JW, et al. Novel optically addressable photochiral displays. SID Dig Tech Pap. 2008;39:919–922.
  • Ryabchun A, Bobrovsky A, Stumpe J, et al. Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch. Adv Opt Mater. 2015;3:1462–1469.
  • Chen X, Wang L, Li C, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers. Chem Commun. 2013;49:10097–10099.
  • Lin TH, Li Y, Wang CT, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv Mater. 2013;25:5050–5054.
  • Guo J, Wang J, Zhang J, et al. Photo- and thermal switching of blue phase films reflecting both right- and left-circularly polarized light. J Mater Chem C. 2014;2:9159–9166.
  • Lin JD, Lin YM, Mo TS, et al. Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal. Opt Express. 2014;22:9171–9181.
  • He WL, Li M, Liu SQ, et al. Synthesis of chiral azobenzene derivatives and the performance in photochemical control of blue phase liquid crystal. Liq Cryst. 2017;45:370–380.
  • Petri A, Bräuchle C, Leigeber H, et al. Cholesteric liquid crystalline siloxanes with azo dye. Generation of additional reflection bands with linearly polarized light. Liq Cryst. 1993;15:113–121.
  • Saipa A, Osipov MA, Lanham KW, et al. The intrinsic photoferroelectric effect in the smectic C* phase of a chiral azobenzene. J Mater Chem. 2006;16:4170–4177.
  • Pieraccini S, Gottarelli G, Labruto R, et al. The control of the cholesteric pitch by some azo photochemical chiral switches. Chem Eur J. 2004;10:5632–5639.
  • Alam MdZ, Yoshioka T, and Ogata T, et al. The influence of molecular structure on helical twisting power of chiral azobenzene compounds. Liq Cryst. 2007;34:1215–1219.
  • Guan J, Zhang M, Gao W, et al. Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene. Chem Phys Chem. 2012;13:1425–1428.
  • Licristal brochure, Merck liquid crystals. 1994. Germany: Merck.
  • Grandjean F. Existence des plans differences équidistants normal a l’axe optique dans les liquids anisotropes [existence of the optical axis planes equidistant normal differences in anisotropic fluids]. C R Hebd Seances Acad. 1921;172:71–74. French.
  • Cano R. Interprétation des discontinuités de grandjean [interpretation of discontinuities grandjean]. Bull Soc Fr Mineral Crystalogr. 1968;91:20–27. French.
  • Gvozdovskyy I, Terenetskaya I. Steroid motor: dynamics of cholesteric helix induction in the nematic droplets. Liq Cryst Today. 2002;11:8–12.
  • Gvozdovskyy I, Lisetski L. Rotation of single crystals of chiral dopants at the top of a nematic droplet: analogy with Lehmann effect. Eur Phys J E. 2007;24:211–215.
  • Gerber PR. On the determination of cholesteric screw sense by the Grandjean-Cano-method. Z Naturforsch. 1980;35:619–622.
  • Gvozdovskyy I, Kurioz Y, Reznikov Y. Exposure and temperature dependences of contact angle of liquid crystals on photoaligning surface. Opto-Electron Rev. 2009;17:116–119.
  • Jin LM, Li Y, Ma J, et al. Synthesis of novel thermally reversible photochromic axially chiral spirooxazines. Org Lett. 2010;12:3552–3555.
  • Yoshida J, Sato H, Hoshino N, et al. Induction and structural control of chiral nematic phases by the use of photoresponsive tris(β-diketonato) Co(III) and Ru(III) сomplexes. J Phys Chem B. 2008;112:9677–9683.
  • Wan Omar WI, Soon CF. Critical surface tension of cholesteryl ester liquid crystal. Adv Mater Res. 2014;925:43–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.