572
Views
2
CrossRef citations to date
0
Altmetric
Articles

Photo-switching behaviour in liquid crystalline materials incorporating a non-planar dithienylcyclopentene core and their birefringence properties

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 1475-1487 | Received 21 Dec 2021, Accepted 16 Feb 2022, Published online: 05 Apr 2022

References

  • Cates EL, Kim JH. Bench-scale evaluation of water disinfection by visible-to-UVC up conversion under high-intensity irradiation. J Photochem Photobiol B Biol. 2015;153:405–411.
  • Cabrera I, Krongauz V, Ringsdorf H. Photo- and thermochromic liquid crystal polysiloxanes. Angew Chem Int Ed Engl. 1987;26(11):1178–1180.
  • Yitzchaik S, Cabrera I, Buchholtz F, et al. Photochromism of liquid-crystal polyacrylates containing spiropyran groups. Macromolecules. 1990;23(3):707–713.
  • Malinčík J, Kohout M, Svoboda J, et al. Photochromic spiropyran-based liquid crystals. J Mol Liq. 2022;346:117842.
  • Hattori H, Uryu T. Synthesis and characterization of polymerizable photochromic liquid crystals containing a spirooxazine group. Liq Cryst. 1999;26(7):1085–1095.
  • Hattori H, Uryu T. Photochromic chiral liquid crystalline systems containing spiro-oxazine with a chiral substituent I. synthesis and characterization of compounds. Liq Cryst. 2001;28(1):25–34.
  • Cabrera I, Dittrich A, Ringsdorf H. Thermally irreversible photochromic liquid crystal polymers. Angew Chem Int Ed Engl. 1991;30(1):76–78.
  • Bobrovsky A, Shibaev V, Elyashievitch G, et al. New photosensitive polymer composites based on oriented porous polyethylene filled with azobenzene‐containing LC mixture: reversible photomodulation of dichroism and birefringence. Liq Cryst. 2008;35(5):533–539.
  • Bobrovsky A, Mochalove K, Oleinkov K, et al. Photoinduced changes of surface topography in amorphous, liquid-crystalline, and crystalline films of bent-core azobenzene-containing substance. J Phys Chem B. 2016;120(22):5073–5082.
  • Bobrovsky A, Mochalove K, Olovyeva D, et al. Laser-induced formation of “craters”and “ills”in azobenzene-containing polymethacrylate films. Soft Matter. 2020;16(23):5398–5405.
  • Bobrovsky A, Svyakhovskiy S, Bogdanov A, et al. Photocontrollable photonic crystals based on porous silicon filled with photochromic liquid crystalline mixture. Adv Optical Mater. 2020;8(22):2001267.
  • Poryvai A, Bubnov A, Kohout M. Chiral photoresponsive liquid crystalline materials derived from cyanoazobenzene central core: effect of UV light illumination on mesomorphic behavior. Crystals. 2020;10(12):1161.
  • Frigoli M, Mehl GH. A photochromic liquid crystal system. ChemPhysChem. 2003;4(1):101–103.
  • Frigoli M, Mehl GH. Modulation of the absorption, fluorescence, and liquid-crystal properties of functionalized diarylethene derivatives. Chem Eur J. 2004;10(18):5243–5250.
  • Frigoli M, Mehl GH. The enhancement of photoswitching in a diarylethene derivative by the incorporation of cyanobiphenyl groups. Chem Commun. 2004;7:818–819.
  • Frigoli M, Mehl GH. Room temperature nematic photoswitchable liquid crystals- molecular modularization of functional elements. Eur J Org Chem. 2004;2004(3):636–642.
  • Frigoli M, Mehl GH. Multiple addressing in a hybrid biphotochromic system. Angew Chem Int Ed. 2005;44(32):5048–5052.
  • Tsujioka T, Onishi I, Natsume D. Photocurrent switching method based on photoisomerization of diarylethene layer for nondestructive readout of photochromic optical memory. Appl Opt. 2010;49(20):3894–3899.
  • Myles AJ, Branda NR. 1,2-dithienylethene photochromes and non-destructive erasable memory. Adv Funct Mater. 2002;12(2):167–173.
  • Irie M, Fukaminato T, Matsuda K, et al. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114(24):12174–12277.
  • Corredor CC, Huang ZL, Belfield KD. Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene. Adv Mater. 2006;18(21):2910–2914.
  • Piao X, Zou Y, Wu J, et al. Multiresponsive switchable diarylethene and its application in bioimaging. Org Lett. 2009;11(17):3818–3821.
  • Tan W, Zhou J, L F, et al. Visible light-triggered photoswitchable diarylethene-based iridium(III) complexes for imaging living cells. Chem Asian J. 2011;6(5):1263–1268.
  • Fukaminato T, Doi T, Tamaoki N, et al. Single-molecule fluorescence potoswitching of a darylethene-prylenebisimide dad: non-destructive fluorescence readout. J Am Chem Soc. 2011;133(13):4984–4990.
  • Hayakawa R, Higashiguchi K, Matsuda K, et al. Optically and electrically driven organic thin film transistors with diarylethene photochromic channel layers. ACS Appl Mater Interfaces. 2013;5(9):3625–3630.
  • Li C, Yan H, Zhao LX, et al. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nat Commun. 2014;5:5709.
  • Uchida K, Kawai Y, Shimizu Y, et al. An optically active diarylethene having cholesterol units: a dopant for photoswitching of liquid crystal phases. Chem Lett. 2000;29(6):654–655.
  • Hayakawa R, Higashiguchi K, Matsuda K, et al. Optically and electrically driven organic thin film transistors with diarylethene photochromic channel layers. ACS Appl Mater Interfaces. 2013;5(9):3625–3630.
  • Chen SH, Chen HMP, Geng Y, et al. Novel glassy nematic liquid crystals for nondestructive rewritable optical memory and photonic switching. Adv Mater. 2003;15(13):1061–1065.
  • Frigoli M, Welch C, Mehl GH. Design of mesomorphic diarylethene-based photochromes. J Am Chem Soc. 2004;126(47):15382–15383.
  • Irie M, Sakemura K, Okinaka M, et al. Photochromism of dithienylethenes with electron-donating substituents. J Org Chem. 1995;60(25):8305–8309.
  • Herder M, Schmidt BM, Grubert L, et al. Improving the fatigue resistance of diarylethene switches. J Am Chem Soc. 2015;137(7):2738–2747.
  • Frisch MJ, Trucks GW, Schlegel HB. Gaussian 09, Revision D.01. Wallingford (CT): Gaussian, Inc; 2009.
  • Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Lee CT, Yang WT, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789.
  • Irie M, Lifka T, Uchida K, et al. Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chem Commun. 1999;(8):747–750.
  • Matis JR, Schönborn JB, Saalfrank P. A multi-reference study of the byproduct formation for a ring-closed dithienylethene photo-switch. Phys Chem Chem Phys. 2015;17(21):14088–14095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.