331
Views
2
CrossRef citations to date
0
Altmetric
Article

Cholesteric liquid crystal films with adjustable wavelength band and reflectance by using wash-out/refill technique and light-responsive compounds

, , , , , , , & show all
Pages 1763-1773 | Received 08 Dec 2021, Accepted 08 Apr 2022, Published online: 18 Apr 2022

References

  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24(47):6260–6276.
  • Broer DJ, Lub J, Mol GN. Wide-Band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467–469.
  • Agez G, Mitov M. Cholesteric Liquid crystalline materials with a dual circularly polarized light reflection band fixed at room temperature. J Phys Chem B. 2011;115(20):6421–6426.
  • Lu H, Wei C, Zhang Q, et al. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal. Photonics Res. 2019;7(2):137–143. doi:10.1364/PRJ.7.000137
  • Gao Y, Yao W, Sun J, et al. A novel soft matter composite material for energy-saving smart windows: from preparation to device application. J Mater Chem a. 2015;3(20):10738–10746.
  • Zhang W, Zhang L, Zhou L, et al. An all-liquid crystal based high-performance laser protection system via linear/nonlinear dual-mechanisms. Chem Commun (Camb). 2018;54(4):397–400. doi:10.1039/C7CC05250B
  • M-Y D, Cao H, Wu Y, et al. Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymersation. Phys Chem Chem Phys. 2017;19(3):2353–2358. doi:10.1039/C6CP07066C
  • St John WD, Fritz WJ, Lu ZJ, et al. Bragg reflection from cholesteric liquid crystals. Phys Rev E. 1995;51(2):1191–1198. doi:10.1103/PhysRevE.51.1191
  • Matranga A, Baig S, Boland J, et al. Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers. Adv Mater. 2013;25(4):520–523. doi:10.1002/adma.201203182
  • Choi H, Kim J, Nishimura S, et al. Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors. Adv Mater. 2010;22(24):2680–2684. doi:10.1002/adma.200904110
  • Song MH, Park B, Nishimura S, et al. Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device. Adv Funct Mater. 2006;16(14):1793–1798.
  • Song MH, Park B, Shin KC, et al. Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals. Adv Mater. 2004;16(910):779–783. doi:10.1002/adma.200306360
  • Hwang J, Song MH, Park B, et al. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nat Mater. 2005;4(5):383–387. doi:10.1038/nmat1377
  • Bae BS, Han S, Shin SS, et al. Dual structure of cholesteric liquid crystal device for high reflectance. Electron Mater Lett. 2013;9(6):735–740.
  • Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nat Mater. 2006;5(5):361–364.
  • Mitov M, Dessaud N. Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity. Liq Cryst. 2007;34(2):183–193.
  • Guo J, Cao H, Wei J, et al. Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light. Appl Phys Lett. 2008;93(20):201901. doi:10.1063/1.3003869
  • Guo J, Yang H, Li R, et al. Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band. J Phys Chem C. 2009;113(37):16538–16543. doi:10.1021/jp903394r
  • Guo J, Liu F, Chen F, et al. Realisation of cholesteric liquid-crystalline materials reflecting both right- and left-circularly polarised light using the wash-out/refill technique. Liq Cryst. 2010;37(2):171–178. doi:10.1080/02678290903443897
  • McConney ME, Tondiglia VP, Hurtubise JM, et al. Thermally induced, multicolored hyper-reflective cholesteric liquid crystals. Adv Mater. 2011;23(12):1453–1457. doi:10.1002/adma.201003552
  • McConney ME, Tondiglia VP, Hurtubise JM, et al. Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymersation. Chem Commun (Camb). 2011;47(1):505–507.
  • Li Y, Liu YJ, Dai HT, et al. Flexible cholesteric films with super-reflectivity and high stability based on a multi-layer helical structure. J Mater Chem C. 2017;5(41):10828–10833.
  • Wu T, Li J, Li J, et al. A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J Mater Chem C. 2016;4(41):9687–9696. doi:10.1039/C6TC02629J
  • Shi W, Zhang X, Han R, et al. Preparation of cholesteric polymer networks with broadband reflection memory effect. Liq Cryst. 2021:1–9–91–9. doi:10.1080/02678292.2021.1949056
  • Chen X, Wang L, Chen Y, et al. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound. Chem Comm. 2014;50(6):691–694. doi:10.1039/C3CC47438K

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.