205
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Self-assembly of ferroferric oxide liquid-crystalline nanocomposites bearing cholesteryl mesogens and ionic groups

, , , , &
Pages 423-436 | Received 14 May 2022, Accepted 08 Oct 2022, Published online: 14 Oct 2022

References

  • Yu X, Cheng H, Zhang M, et al. Graphene-based smart materials. Nat Rev Mater. 2017;2:17046.
  • Bica I, Liu YD, Choi HJ. Physical characteristics of magnetorheological suspensions and their applications. J Ind Eng Chem. 2013;19:394–406.
  • Zhao P, Tong Y, Ma N, et al. Molecular dynamics simulations and experimental studies of the microstructure and mechanical properties of a silicone oil/functionalized ionic liquid-based magnetorheological fluid. ACS Appl Mater Interfaces. 2022;14:10987–10997.
  • Zhang Y, Li D, Zhang Z. The study of magnetorheological fluids sedimentation behaviors based on volume fraction of magnetic particles and the mass fraction of surfactants. Mater Res Express. 2020;6:126127.
  • Thiagarajan S, Koh AS. Performance and stability of magnetorheological fluids-a detailed review of the state of the art. Adv Eng Mater. 2021;23:2001458.
  • Yang Y, Xu ZD, Xu YW, et al. Analysis on influence of the magnetorheological fluid microstructure on the mechanical properties of magnetorheological dampers. Smart Mater Struct. 2020;29:115025.
  • Roupec J, Michal L, Strecker Z, et al. Influence of clay-based additive on sedimentation stability of magnetorheological fluid. Smart Mater Struct. 2021;30:027001.
  • Prajapati H, Lakdawala A. Characterization of magnetorheological fluid: a study on sedimentation and redispersion. Adv Eng Mater. 2022;24:2101415.
  • Choi YT, Xie L, Wereley NM. Testing and analysis of magnetorheological fluid sedimentation in a column using a vertical axis inductance monitoring system. Smart Mater Struct. 2016;25:04T01.
  • Han S, Choi J, Kim J, et al. Porous Fe3O4 submicron particles for use in magnetorheological fluids. Colloid Surface A. 2021;613:126066.
  • Fei C, Li H, Han M, et al. Preparation of magnetorheological fluid with excellent sedimentation stability. Mater Manuf Process. 2020;35:1077–1083.
  • Aruna MN, Rahman MR, Joladarashi S, et al. Influence of different fumed silica as thixotropic additive on carbonyl particles magnetorheological fluids for sedimentation effects. J Magn Magn Mater. 2021;529:167910.
  • López-López MT, Kuzhir P, Bossis G, et al. Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties. Rheol Acta. 2008;47:787–796.
  • Vėžys J, Dragašius E, Volkovas V, et al. The sedimentation of magneto-rheological fluid monitoring system based on resistivity measuring. Mechanics. 2016;22:449–452.
  • Wang G, Ma Y, Tong Y, et al. Development of manganese ferrite/graphene oxide nanocomposites for magnetorheological fluid with enhanced sedimentation stability. J Ind Eng Chem. 2017;48:142–150.
  • Shen C, Oda Y, Matsubara M, et al. Magnetorheological fluids with surface-modified iron oxide magnetic particles with controlled size and shape. ACS Appl Mater Interfaces. 2021;13:20581–20588.
  • Tong Y, Li X, Zhao P, et al. Improved magnetorheological properties by using ionic liquid as carrier liquid of magnetorheological fluids. Front Mater. 2021;8:659998.
  • Wang Y, Sun Y, Gong S, et al. Influence of silver nanoparticles on settling of suspended sediments. J Mol Liq. 2020;299:112135.
  • Vesilind PA. Design of prototype thickeners from batch settling tests. Water Sewage Works. 1968;115:302–307.
  • Dick RI, Young KW. Analysis of thickening performance of final settling tanks. In: Miller P, editor. Engineering technical reports collection. Proceedings of the 27th Industrial Waste Conference; 1972 May 2-4; Lafayette. Indiana: Purdue University Press; 1972. p. 33–54.
  • Richardson JF, Zaki WN. Sedimentation and fluidisation: part 1. Chem Eng Res Design. 1997;75:S82–100.
  • Nguyen MT, Yu K, Tokunaga T, et al. Green synthesis of size-tunable iron oxides and iron nanoparticles in a salt matrix. ACS Sustain Chem Eng. 2019;7:17697–17705.
  • Lee JH, Han WJ, Jang HS, et al. Highly tough, biocompatible, and magneto-responsive Fe3O4/laponite/PDMAAm nanocomposite hydrogels. Sci Rep. 2019;9:15024.
  • Ruan X, Pei L, Xuan S, et al. The rheological response of the superparamagnetic fluid based on Fe3O4 hollow nanospheres. J Magn Magn Mater. 2017;429:1–10.
  • Liu Z, Zhou X, Zhang Y, et al. Fabrication of monodispersed, uniform rod-shaped FeCO3/CoCO3 microparticles using a facile solvothermal method and their excellent microwave absorbing properties. J Alloy Compd. 2016;665:388–393.
  • Krajewski M, Brzozka K, Lin WS, et al. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles. Phys Chem Chem Phys. 2016;18:3900–3909.
  • Zhang P, Lee K-H, Lee C-H. Friction behavior of magnetorheological fluids with different material types and magnetic field strength. Chin J Mech Eng En. 2015;29:84–90.
  • Petrov DA, Skokov PK, Zakhlevnykh AN, et al. Magnetic segregation effect in liquid crystals doped with carbon nanotubes. Beilstein J Nanotech. 2019;10:1464–1474.
  • Petrescu E, Cirtoaje C, Danila O. Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields. Beilstein J Nanotech. 2018;9:399–406.
  • Yadav SP, Singh S. Carbon nanotube dispersion in nematic liquid crystals: an overview. Prog Mater Sci. 2016;80:38–76.
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2857–3060.
  • Tomasovicova N, Timko M, Mitroova Z, et al. Capacitance changes in ferronematic liquid crystals induced by low magnetic fields. Phys Rev E Stat Nonlin Soft Matter Phys. 2013;87:014501.
  • Muševič I. Nematic liquid-crystal colloids. Materials (Basel). 2017;11:24.
  • Uchida Y, Ikuma N, Tamura R, et al. Unusual intermolecular magnetic interaction observed in an all-organic radical liquid crystal. J Mater Chem. 2008;18:2950–2952.
  • Kong W, Tang X, Chang X, et al. Self-assembly and molecular electrical switching property of phthalocyanine-based liquid-crystalline poly(styrene sulfonic acid) compounds. Macromol Mater Eng. 2021;306:2100009.
  • Bai L, Tang X, Gao Y, et al. Self-assembly of liquid crystalline polyethyleneimines bearing cholesteryl mesogens and ionic groups. New J Chem. 2018;42:3236–3245.
  • Wu Y, Yan Z, Wang P, et al. Fe3O4/poly(acrylic acid) hybrid nanoparticles for water-based drilling fluids. J Appl Polym Sci. 2016;133:44010.
  • Tian Z, Chen F, Wu X, et al. A novel preparation process for magnetorheological fluid with high sedimentation stability. Mater Manuf Process. 2016;31:2030–2036.
  • Castelar S, Romero P, Serrano JL, et al. Multifunctional ionic hybrid poly(propyleneimine) dendrimers surrounded by carbazole dendrons: liquid crystals, optical and electrochemical properties. RSC Adv. 2015;5:65932–65941.
  • Peng L, Xu Z, Liu Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun. 2015;6:5716.
  • Zhang S, Niu H, Cai Y, et al. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J. 2010;158:599–607.
  • Han S, Choi J, Seo YP, et al. High-performance magnetorheological suspensions of pickering-emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir. 2018;34:2807–2814.
  • Wang G, Geng J, Qi X, et al. Rheological performances and enhanced sedimentation stability of mesoporous Fe3O4 nanospheres in magnetorheological fluid. J Mol Liq. 2021;336:116389.
  • Bala I, Pal SK. Rod–disc oligomeric liquid crystal based on 4-cyanobiphenyl and truxene core. Liq Cryst. 2016;43:963–971.
  • Bilardello D, Jezek J, Gilder SA. Role of spherical particles on magnetic field recording in sediments: experimental and numerical results. Phys Earth Planet in. 2013;214:1–13.
  • Kynch GJ. A theory of sedimentation. 1952;48:166–176. DOI:10.1039/tf9524800166.
  • Holdich RG. Fundamentals of particle technology. Shepshed, Leicestershire,UK: Midland Information Technology and Publishing; 2002.
  • Choi J, Han S, Nam KT, et al. Hierarchically structured Fe3O4 nanoparticles for high-performance magnetorheological fluids with long-term stability. ACS Appl Nano Mater. 2020;3:10931–10940.
  • Mertelj A, Lisjak D. Ferromagnetic nematic liquid crystals. Liq Cryst Rev. 2017;5:1–33.
  • Suzuki K, Uchida Y, Tamura R, et al. Observation of positive and negative magneto-LC effects in all-organic nitroxide radical liquid crystals by EPR spectroscopy. J Mater Chem. 2012;22(14):6799–6806.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.