256
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Dynamics of chiral liquid crystals between cylinders using Landau-de Gennes theory

&
Pages 437-452 | Received 13 Jul 2022, Accepted 08 Oct 2022, Published online: 17 Oct 2022

References

  • Larson RG. The structure and rheology of complex fluids. New York: Oxford University Press; 1999. [cited 2022 Oct 14]. Available from: http://www.books24x7.com/marc.asp?bookid=9316
  • Grecov D, Rey AD. Theoretical and computational rheology for discotic nematic liquid crystals. Mol Cryst Liq Cryst Sci Technol. 2002;391:57–94.
  • Noroozi N, Grecov D. Flow modelling and rheological characterization of nematic liquid crystals between concentric cylinders. Liq Cryst. 2013 Jul;40(7):871–883.
  • Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano. 2011 Apr;5(4):2908–2915.
  • Nikzad A, Akbari A, Grecov D. Rheological properties of discotic nematic liquid crystals: graphene oxide dispersions study. Liq Cryst. 2021;48:1685–1698.
  • Noroozi N, Grecov D. Numerical simulation of flow and structure in nematic liquid crystalline materials between eccentric cylinders. J Nonnewton Fluid Mech. 2014 Jun;208–209:1–17.
  • Jullien A, Scarangella A, Bortolozzo U, et al. Nanoscale hyperspectral imaging of tilted cholesteric liquid crystal structures. Soft Matter. 2019 Apr;15(15):3256–3263.
  • Noroozi N. Numerical simulations of flow and microstructure in nematic liquid crystalline materials. University of British Columbia; 2013. Available from: https://open.library.ubc.ca/collections/ubctheses/24/items/1.0165526
  • Livolant F, Leforestier A. Condensed phases of DNA: structures and phase transitions. Prog Polym Sci. 1996 Jan;21(6):1115–1164.
  • Barberi L, Livolant F, Leforestier A, et al. Local structure of DNA toroids reveals curvature-dependent intermolecular forces. bioRxiv. 2020.
  • Eltsov M, Grewe D, Lemercier N, et al. Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. Nucleic Acids Res. 2018 Sep;46(17):9189–9200.
  • Berg HC, Anderson RA. Bacteria swim by rotating their flagellar filaments. Nat. 1973;245(5425):380–382.
  • Ermakov SF, Myshkin NK, Kolesnikov VI, et al. On the mechanism of cholesteric liquid crystal lubricity in metal joint friction. J Frict Wear. 2015 Dec;36(6):496–501.
  • Ermakov SF, Kolesnikov VI, Sychev AP. Lubricity of cholesteric liquid-crystal nanomaterials in friction of solids. J Frict Wear. 2016 May;37(2):136–140.
  • Usol’Tseva NV, Smirnova MV, Kazak AV, et al. Rheological characteristics of different carbon nanoparticles in cholesteric mesogen dispersions as lubricant coolant additives. J Frict Wear. 2015 Oct;36(5):380–385.
  • Gao Y, Jiang Y, Hu W, et al. Cholesteryl liquid crystals as oil-based lubricant additives: effect of mesogenic phases and structures on tribological characteristics. Langmuir. 2019 May;35(21):6981–6992.
  • Marenduzzo D, Orlandini E, Yeomans JM. Rheology of distorted nematic liquid crystals. EPL (Europhysics Lett). 2003 Nov;64(3):406.
  • Tsuji T, Rey AD. Orientation mode selection mechanisms for sheared nematic liquid crystalline materials. Phys Rev E. 1998 May;57(5):5609.
  • Tsuji T, Rey AD. Effect of long range order on sheared liquid crystalline materials part 1: compatibility between tumbling behavior and fixed anchoring. J Nonnewton Fluid Mech. 1997 Nov;73(1–2):127–152.
  • Helfrich W. Capillary flow of cholesteric and smectic liquid crystals. Phys Rev Lett. 1969 Aug;23(7):372.
  • Hongladarom K, Secakusuma V, Burghardt WR. Relation between molecular orientation and rheology in lyotropic hydroxypropylcellulose solutions. J Rheol. 1998 Jun;38(5):1505.
  • Marenduzzo D, Orlandini E, Yeomans JM. Permeative flows in cholesterics: shear and poiseuille flows. J Chem Phys. 2006 May;124(20):204906.
  • Zhang H, Zhang Y, Wang Y, et al. Director configuration of liquid crystals in a cylindrical cavity with homeotropic anchoring conditions. Mol Phys. 2021;119:e1966532.
  • Dris IM, Shaqfeh ESG. Experimental and theoretical observations of elastic instabilities in eccentric cylinder flows: local versus global instability. J Nonnewton Fluid Mech. 1998 Dec;80(1):1–58.
  • Dris I, Shaqfeh ESG. Flow of a viscoelastic fluid between eccentric cylinders: impact on flow stability. J Nonnewton Fluid Mech. 1998 Dec;80(1):59–87.
  • Ballal BY, Rivlin RS. Flow of a newtonian fluid between eccentric rotating cylinders: inertial effects. Arch Ration Mech Anal. 1976;62(3):237–294.
  • Tian G, Wang M, Wang X, et al. Flow between eccentric cylinders: a shear-extensional controllable flow. J. 2016;28(2):139–148.
  • Xiang J, Hajizadeh E, Larson RG, et al. Predictions of polymer migration in a dilute solution between rotating eccentric cylinders. J Rheol (N Y N Y). 2021 Sep;65(6):1311.
  • Nikzad A, Grecov D. Numerical simulations of nematic liquid crystals flows between eccentric cylinders. Proc 5th Int Conf Fluid Flow Heat Mass Transf. 2018;183:1–5.
  • Grecov D, Clermont J-R. Numerical simulations of non-Newtonian cylinders by domain decomposition and stream-tube method. J Nonnewton Fluid Mech. 2005;126(2–3):175–185.
  • Feng J, Leal LG. Pressure-driven channel flows of a model liquid-crystalline polymer. Phys Fluids. 1999;11(10):2821–2835.
  • Li J, Zeng X, Ren T, et al. The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants. 2014 Sep;2(3):137–161.
  • Ericksen JL. Conservation laws for liquid crystals conservation laws for liquid crystals. Trans Society Rheol. 1961;5(34):1205–1959.
  • Kröger M, Sellers S. Viscosities of nematic and discotic nematic liquid crystals according to the affine transformation model. Mol Cryst Liq Cryst Sci Technol. 1997 Jul;300(1):245–262.
  • Oseen CW. The theory of liquid crystals. Trans Faraday Soc. 1933 Jan;29(140):883.
  • De Gennes PG. Short range order effects in the isotropic phase of nematics and cholesterics. Mol Cryst Liq Cryst. 1971 Feb;12(3):193–214.
  • Pospisil MJ, Saha P, Abdulquddos S, et al. Orientation relaxation dynamics in cellulose nanocrystal dispersions in the chiral liquid crystalline phase. Langmuir. 2018 Nov;34(44):13274–13282.
  • Venhaus DG, Conatser KS, Green MJ. Dynamics of chiral liquid crystals under applied shear. Liq Cryst. 2013 Jun;40(6):846–853.
  • Grecov D, Rey AD. Theoretical and computational rheology for discotic nematic liquid crystals. Mol Cryst Liq Cryst. 2003 Jan;391(1):57–94.
  • Yang X, Forest MG, Mullins W, et al. Dynamic defect morphology and hydrodynamics of sheared nematic polymers in two space dimensions. J Rheol (N Y N Y). 2009 May;53(3):589–615.
  • Singh AP, Rey AD. Microstructure constitutive equation for discotic nematic liquid crystalline materials. Part II. Microstructure-rheology relations. Rheol Acta. 1998;37(4):374–386.
  • Tsuji T, Rey AD. Effect of long range order on sheared liquid crystalline materials: flow regimes, transitions, and rheological phase diagrams. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Dec;62(6 Pt A):8141–8151.
  • Grecov D, Rey AD. Transient rheology of discotic mesophases. Rheol Acta. 2003 Nov;42(6):590–604.
  • Grecov D, Rey AD. Steady state and transient rheological behavior of mesophase pitch, part II: theory. J Rheol. 2005 Jan;49(1):175–195.
  • Orlandini E, Marenduzzo D, Yeomans JM. Viscoelastic flows of cholesteric liquid crystals. Mol Cryst Liq Cryst. 2010 Apr;465(1):1–14.
  • Noroozi N, Grecov D, Shafiei-Sabet S. Estimation of viscosity coefficients and rheological functions of nanocrystalline cellulose aqueous suspensions. Liq Cryst. 2014;41(1):56–66.
  • Cui Z, Calderer MC, Wang Q. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discret Contin Dyn Syst B 2006. 2005 Dec;6:291–310.
  • Wiese O, Marenduzzo D, Henrich O. Microfluidic flow of cholesteric liquid crystals. Soft Matter. 2016 Nov;12(45):9223–9237.
  • Khadem SA, Bagnani M, Mezzenga R, et al. Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry. Nat Commun. 2020 Sep;11(1):1–10.
  • De Luca G, Rey AD. Chiral front propagation in liquid-crystalline materials: formation of the planar monodomain twisted plywood architecture of biological fibrous composites. Phys Rev E. 2004 Jan;69(1):011706.
  • Singh AP, Rey AD. Microstructure constitutive equation for discotic nematic liquid crystalline materials. Rheol Acta. 1998 Feb;37(1):30–45.
  • Acevedo A, Cotts PM, Annette DS. Molecular weight dependence of the rotational diffusivity of rod like polymers in concentrated nematic solutions. Macromolecules. 2005;38(15):6648–6655.
  • Noroozi N, Grecov D. Numerical simulation of three-dimensional flow-induced microstructure in a simplified prosthetic hip joint with nematic liquid crystal lubricant. Rheol Acta. 2014 Jun;53(5–6):457–465.
  • Rey AD. Liquid crystal models of biological materials and processes. Soft Matter. 2010 Jul;6(15):3402–3429.
  • Klein DH, Leal LG, García-Cervera CJ, et al. Ericksen number and Deborah number cascade predictions of a model for liquid crystalline polymers for simple shear flow. Phys Fluids. 2007 Feb;19(2):023101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.